
How To Recognize
A Split-Plot
Experiment
by Scott M. Kowalski and Kevin J. Potcner

60 I NOVEMBER 2003 I www.asq.org

he application of statistically designed experi-
ments is becoming increasingly important in
organizations engaged in Six Sigma and other

quality initiatives. In conducting these experiments and
analyzing the resulting data, experimenters become
aware of the treatment structure of the design: the num-

ber of factors to be studied and the various factor
level combinations. 

For example, most practitioners know a 23 full
factorial design consists of three factors, each at
two levels, where all eight treatment combinations
are studied. However, practitioners often neglect
the details of how the experimental runs are per-
formed and thus fail to see how this component,
along with the treatment structure, determines
which statistical approach to use.

Most would choose to run the eight treatment
combinations in a completely randomized order,
known as a 23 full factorial completely randomized
design. Unfortunately, limitations involving time,
material, cost and experimental equipment can
make it inefficient and, at times, impossible to run
a completely randomized design. In particular, it
may be difficult to change the level for one of the
factors. In this case, practitioners typically fix the
level of the difficult-to-change factor and run all
the combinations of the other factors—the split-
plot design.

Recognizing a Split-Plot Design
Split-plot experiments began in the agricultural

industry. Because one factor in the experiment is
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• Not incorporating the experimental approach into an

analysis can result in incorrect conclusions. 

• One type of statistical experimental design, known as

the split-plot, is often more common in experimental

situations than the completely randomized design. 

• Several examples will help practitioners recognize

the split-plot design.
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usually a fertilizer or irrigation method, it can only
be applied to large sections of land called whole
plots. The factor associated with this is therefore
called a whole plot factor.

Within the whole plot, another factor, such as
seed variety, is applied to smaller sections of the
land, which are obtained by splitting the larger sec-
tion of the land into subplots. This factor is there-
fore referred to as the subplot factor. 

These same experimental situations are also
common in industrial settings. Split-plot designs
have three main characteristics: 

1. The levels of all the factors are not randomly
determined and reset for each experimental
run. Did you hold a factor at a particular set-
ting and then run all the combinations of the
other factors?

2. The size of the experimental unit is not the same
for all experimental factors. Did you apply one
factor to a larger unit or group of units involv-
ing combinations of the other factors?

3. There is a restriction on the random assign-
ment of the treatment combinations to the
experimental units. Is there something that
prohibits assigning the treatments to the units
completely randomly?

The following industrial examples will help you
recognize when it would be best to use a split-plot
experiment. 

Example A
Let’s say you want to examine the image quality

of a printing process by varying three factors: 
• A = blanket type. 
• B = cylinder gap. 
• C = press speed. 
Figure 1 illustrates a simple image of this part of

a printing press.
You plan to study two different blanket types (1

and 2), three different cylinder gaps (low, medium
and high) and two press speeds (low and high),
and will run all 12 treatment combinations (see
Figure 2) in the experiment. A completely random-
ized design would require you to run the 12 treat-
ment combinations in a random order.

To change the cylinder gap and press speed, you

simply make an adjustment on a control panel while
the printing press is still running. Factors such as
these are called easy-to-change factors. To change
the blanket type, however, you must stop the press
and manually replace the blanket. A change such as
this is called a hard-to-change factor. 

Now imagine the first three runs in your experi-
ment are (A = 1, B = -1 and C = -1), (A = 2, B = 1
and C = -1) and (A = 1, B = 0 and C = 1). This
means you would have to install the blanket three
times (1 to 2, then back to 1), and using a complete-
ly randomized design would require you to fre-
quently stop the press, thereby extending the time
required to run the experiment. 

A more time efficient approach, and one that fits
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into the split-plot framework, would be to randomly
choose one of the blanket types (1 or 2), install it on
the printing press, and run the six treatment combi-
nations in cylinder gap and press speed in a random
order. Then you would change the blanket type and
run the six treatments in another random order,

repeating the process until you reached the desired
number of replicates for the blanket type factor. 

The way in which the factor levels for blanket
type are changed in the second approach involves
a different randomization scheme from that of the
factor levels for the other two factors. This different
randomization structure is one feature of a split-
plot design and is common when some of the fac-
tors are difficult to change. If the experiment were
conducted in this manner, it would be incorrect to
analyze the data as if you had run the experiment
as a completely randomized design.

Example B 
Now let’s look at an experiment involving the

water resistance property of wood in which you
select two types of wood pretreatment (1 and 2)
and four types of stain (1, 2, 3 and 4) as variables
(see Figure 3).

To conduct this experiment in a randomized
fashion, you would need eight
wood panels for each full replicate
of the design. You would then ran-
domly assign a particular pretreat-
ment and stain combination to each
wood panel.

That’s when you discover how
difficult it is to apply the pretreat-
ment to a small wood panel. The
easiest way to do it would be to
apply each of the pretreatment
types (1 and 2) to an entire board,
then cut each board into four pieces
and apply the four stain types to
the smaller pieces (see Figure 4).

The experimental units for the
two factors in this experiment are
not the same. For the pretreatment
factor, the experimental unit is the
entire board, but for the stain fac-
tor, the experimental unit is one of
the small panels cut from the large
board. Varying sizes of experimen-
tal units is another feature of split-
plot designs.

Example C
Let’s say you want to examine

the effect the four following 
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various factors have on the strength of plastic: 
• A = baking temperature. 
• B = additive percentage. 
• C = agitation rate. 
• D = processing time. 
You plan to study each factor at two levels: low

= -1 and high = 1. See Figure 5 for a graphical rep-
resentation of this treatment design.

To conduct this experiment as a completely ran-
domized design, you would run all 16 treatment
combinations in a random order. After obtaining

the required 16 batches of plastic, two for each of
the eight different combinations of factors B, C and
D, you would pour the plastic into molds and bake
each individually at one of two temperatures (see
Figure 6). 

If you conducted the experiment in this way,
you would have to frequently change the baking
oven’s temperature, which may take some time to
stabilize. A completely randomized design also
implies each run of the oven is a true experimental
run. That means 16 separate runs of the oven are

Factors That Affect the Strength of PlasticFIGURE 5
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16 batches of plastic prepared (two for each of the 
eight treatment combinations for B: additive percentage, 
C: agitation rate and D: processing time).
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Baked in oven (one at a time) 
at a particular level of A: baking temperature.
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needed, therefore adding considerable time to the
experiment.

A more efficient approach would be to bake all
eight molds for one temperature setting at the same
time. You would follow this by a single run of the
oven at the other temperature level, repeating the
process until you have run the desired number of
replicates for the temperature factor (see Figure 7).

Now you no longer have a completely random-
ized design but a split-plot design. Why? There are
three reasons:

1. For each of the three factors—additive percent-
age, agitation rate and processing time—one
experimental unit equals one batch of plastic,
while for the temperature factor, one experi-
mental unit equals all eight batches. 

2. Temperature can be thought of as a hard-to-
change factor, and the three easy-to-change
factors are varied within a level of the hard-to-
change factor. 

3. The temperature factor uses a different ran-
domization scheme from the other factors. The
molds are assigned to the temperature factor
in groups of eight as opposed to individually.

Split-Plot Design Affects Analysis
Many practitioners fail to see there is more to

knowing the correct analysis than just being able to
identify the treatment structure. The analysis of
designed experiments directly follows from the
way the runs were carried out. 

For example, when a designed experiment uses
blocks such as days or batches, the analysis of the
experiment includes a term for these blocks. When
a designed experiment is performed by fixing a fac-
tor and then running the combinations of the other
factors, using different sized experimental units or
using a different randomization for the factors (a
split-plot design), the analysis should incorporate
these features. 

In example C, the complete 23 factorial treat-
ment design was replicated twice using the split-
plot approach. This resulted in the 32 response
values shown in Table 1. The responses were first
analyzed incorrectly as if they came from a com-
pletely randomized design. The responses were
then correctly analyzed as a split-plot experi-
ment. (Our intention is not to teach the analysis,
but interested readers can look at Table 2 (p. 66)

Group Baking ProcessFIGURE 7

16 batches of plastic prepared (two for each of the 
eight treatment combinations for B: additive percentage, 
C: agitation rate and D: processing time).

Particular treatment
combination for 
B: additive percentage, 
C: agitation rate and 
D: processing time.

Baked in oven (eight at a time) 
at a particular level of A: baking temperature.
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for a summary of the two different analyses.)
The results of the incorrect analysis, a completely

randomized design, indicate that, at the 0.05 signifi-
cance level, the main effects for A (baking tempera-
ture) and D (processing time) are significant, as are
the AC (baking temperature/agitation rate) and
AD (baking temperature/processing time) interac-
tions. 

The results of the correct, split-plot analysis indi-
cate the main effects for B (additive percentage)
and D (processing time) are significant at the 0.05
level and A (baking temperature) is not. In addi-
tion to the AC (baking temperature/agitation rate)
and AD (baking temperature/processing time)
interactions, the CD (agitation rate/processing
time) interaction is also significant. 

Experimental Error
Two interesting results appear when the two

analysis approaches are compared: 
1. The effect of the baking temperature was

thought to be significant when analyzed as a
completely randomized design but was actual-
ly insignificant when analyzed correctly. The
whole plot error of 56.29 is much larger than
the error of 14.21 from the completely random-
ized design analysis. This would cause you to
incorrectly assume baking temperature is an
important effect. 

2. Effects at the subplot level that were not sig-
nificant when analyzed as a completely ran-
domized design are seen as significant when
analyzed correctly. The subplot error of 9.78 is
smaller than the one that arises when a com-
pletely randomized design is incorrectly
assumed. As a result, important effects at the
subplot level that were missed in the incorrect
analysis are now seen. 

Why did this happen? In the completely ran-
domized design, all factor effects use the mean
square error as the estimate of experimental error.
In a split-plot experiment, however, there are two
different experimental error structures: one for the
whole plot factor and one for the subplot factors.
This is a result of the two separate randomizations
that occur when the experiment is run. 

Experimental error is caused when the actual
experimental conditions are replicated. This could
include the preparation and mixing of the plastic

batches or the setup and temperature stabilization
of the oven. For the baking temperature factor,
there are only four experimental units—each set of
eight molds placed together in the oven. 

Even though each of these eight molds comes
from a different treatment combination of the other
three factors, they were all processed in a single
run of the oven. They do not provide an estimate of
experimental error for the whole plot factor. The
experimental error for the whole plot factor comes

The 32 Response ValuesTABLE 1

Temperature Additive Rate Time Strength

A B C D Y
1 1 1 -1 -1 51.9
2 1 1 -1 1 66.8
3 1 1 1 -1 66.2
4 1 1 1 1 70.8
5 1 -1 1 -1 61.3
6 1 -1 1 1 68.5
7 1 -1 -1 1 59.5
8 1 -1 -1 -1 58.5
9 -1 1 -1 -1 57.4
10 -1 1 -1 1 57.5
11 -1 -1 1 -1 56.5
12 -1 1 1 1 63.9
13 -1 -1 1 1 56.4
14 -1 1 1 -1 58.1
15 -1 -1 -1 1 53.2
16 -1 -1 -1 -1 59.5

Temperature Additive Rate Time Strength

A B C D Y
17 -1 -1 -1 -1 66.6
18 -1 -1 -1 1 63.9
19 -1 1 1 -1 62.6
20 -1 1 1 1 63.2
21 -1 -1 1 -1 56.1
22 -1 1 -1 1 63.3
23 -1 -1 1 1 62.7
24 -1 1 -1 -1 65.0
25 1 -1 -1 -1 59.5
26 1 -1 -1 1 64.2
27 1 -1 1 1 68.0
28 1 -1 1 -1 58.6
29 1 1 -1 -1 65.6
30 1 1 1 1 73.3
31 1 1 -1 1 61.5
32 1 1 1 -1 64.0
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from the variation experienced when the tempera-
ture is changed. This whole plot error is typically
larger than the error from a completely random-
ized design. 

In conducting a split-plot experiment, you need
to be sure there is true replication in the whole plot
factor. If each level of baking temperature was run
only once and not replicated as it was here, there
would be no estimate of whole plot experimental
error and, therefore, no statistical test for this factor.

The challenges faced by practitioners result in
completely randomized experiments being the
exception, not the norm. Unfortunately, split-plot
and other noncompletely randomized experimen-
tal designs have not received proper attention in
most Black Belt statistical training courses because
the mathematical concepts are usually more com-
plicated or more general than those in the com-
pletely randomized design. 

Fortunately, the availability of statistical soft-
ware has slowly started to ease the analysis and
interpretation of more complicated experimental
structures, such as split-plot experiments. 

Knowledge of the split-plot design gives practi-
tioners another option with which to conduct
experiments more efficiently.
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Summary of Incorrect and Correct Analyses for ExampleTABLE 2

Incorrect completely random

Term Significance Variability

Temperature ▲ Significant 14.21

Additive ▲ Not significant 14.21

Rate Not significant 14.21

Time Significant 14.21

Temperature/additive Not significant 14.21

Temperature/rate Significant 14.21

Temperature/time Significant 14.21

Additive/rate Not significant 14.21

Additive/time Not significant 14.21

Rate/time ▲ Not significant 14.21

One error
term for all

Correct split-plot

Significance Variability

Not significant 56.29

Significant 9.78

Not significant 9.78

Significant 9.78

Not significant 9.78

Significant 9.78

Significant 9.78

Not significant 9.78

Not significant 9.78

Significant 9.78

Two error
terms

▲ Shows terms that have a different interpretation between the two analyses. 


