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Algebraic geometry of 2 × 2 contingency tables
Aleksandra B. Slavković

Stephen E. Fienberg

Abstract

Contingency tables represent the joint distribution of categorical variables. In this
chapter we use modern algebraic geometry to update the geometric representation
of 2 × 2 contingency tables first explored in (Fienberg 1968) and (Fienberg and
Gilbert 1970). Then we use this geometry for a series of new ends including various
characterizations of the joint distribution in terms of combinations of margins,
conditionals, and odds ratios. We also consider incomplete characterisations of the
joint distribution and the link to latent class models and to the phenomenon known
as Simpson’s paradox. Many of the ideas explored here generalise rather naturally
to I × J and higher-way tables. We end with a brief discussion of generalisations
and open problems.

3.1 Introduction

(Pearson 1956) in his presidential address to the Royal Statistical Society was one
of the earliest statistical authors to write explicitly about the role of geometric
thinking for the theory of statistics, although many authors previously, such as
(Edgeworth 1914) and (Fisher 1921), had relied heuristically upon geometric char-
acterisations.

For contingency tables, beginning with (Fienberg 1968) and (Fienberg and
Gilbert 1970), several authors have exploited the geometric representation of con-
tingency table models, in terms of quantities such as margins and odds ratios,
both for the proof of statistical results and to gain deeper understanding of models
used for contingency table representation. For example, see (Fienberg 1970) for the
convergence of iterative proportional fitting procedure, (Diaconis 1977) for the geo-
metric representation of exchangeability, and (Kenett 1983) for uses in exploratory
data analysis. More recently, (Nelsen 1995, Nelsen 2006) in a discussion of copulas
for binary variables points out that two faces of the tetrahedron form the Fréchet
upper bound, the other two the lower bound, and the surface of independence is
the independence copula.

There has also been considerable recent interest in geometric descriptions of
contingency tables models and analytical tools, from highly varying perspectives.
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(Erosheva 2005) employed a geometric approach to compare the potential value
of using the Grade of Membership, latent class, and Rasch models in represent-
ing population heterogeneity for 2J tables. Similarly, (Heiser 2004, De Rooij and
Anderson 2007, De Rooij and Heiser 2005) have given geometric characterisa-
tions linked to odds ratios and related models for I × J tables, (Greenacre and
Hastie 1987) focus on the geometric interpretation of correspondence analysis for
contingency tables, (Carlini and Rapallo 2005) described some of the links to
(Fienberg and Gilbert 1970) as well as the geometric structure of statistical models
for case-control studies, and (Flach 2003) linked the geometry to Receiver Operating
Characteristic space.

In this chapter we return to the original geometric representation of (Fienberg
and Gilbert 1970) and link the geometry to some modern notions from algebraic ge-
ometry, e.g., as introduced to statistical audiences in (Diaconis and Sturmfels 1998)
and (Pistone et al. 2001), to provide a variety of characterisations of the joint dis-
tribution of two binary variables, some old and some new. There are numerous
ways we can characterise bivariate distributions, e.g., see (Arnold et al. 1999, Ra-
machandran and Lau 1991, Kagan et al. 1973). In related work, (Slavkovic and
Sullivant 2006) give an algebraic characterisation of compatibility of full condition-
als for discrete random variables. In this chapter, however, we are interested in the
‘feasibility’ question; that is, when do compatible conditionals and/or marginals
correspond to an actual table. Under the assumption that given sets of marginal
and conditional binary distributions are compatible, we want to check whether or
not they are sufficient to uniquely identify the existing joint distribution. We are
under the assumptions of the uniqueness theorem of (Gelman and Speed 1993) as
redefined by (Arnold et al. 1999). More specifically, we allow cell entries to be zero
as long as we do not condition on an event of zero probability. We draw on a more
technical discussion in (Slavkovic 2004), and we note the related discussion in (Luo
et al. 2004) and in (Carlini and Rapallo 2005).

3.2 Definitions and notation

Contingency tables are arrays of non-negative integers that arise from the cross-
classification of a sample or a population of N objects based on a set of categorical
variables of interest, see (Bishop et al. 1975) and (Lauritzen 1996). We represent
the contingency table n as a vector of non-negative integers, each indicating the
number of times a given configuration of classifying criteria has been observed in
the sample. We also use the contingency table representation for probabilities p for
the joint occurrence of the set of categorical variables.

We let X and Y be binary random variables and denote by nij the observed cell
counts in a 2 × 2 table n. When we sum over a subscript we replace it by a ‘+’.
Thus ni+ and n+j denote the row and column totals, respectively, and these in
turn sum to the grand total n++. See the left-hand panel of Table 3.1. Similarly,
we represent the joint probability distribution for X and Y as a 2 × 2 table of cell
probabilities p = (pij ), where pij = P (X = i, Y = j), i, j = 1, 2, are non-negative
and sum to one. See the right-hand panel of Table 3.1.
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Table 3.1 Notation for 2 × 2 tables: Sample point on the left and parameter value
on the right.

Y1 Y2 Total Y1 Y2 Total

X1 n11 n12 n1+ X1 p11 p12 p1+
X2 n21 n22 n2+ X2 p21 p22 p2+

Total n+1 n+2 n++ Total p+1 p+2 1

A2

A3

A4

A1

Fig. 3.1 Surface of independence for the 2×2 table. The tetrahedron represents the set of
all probability distributions p = (p11 , p12 , p21 , p22 ) for the 2 × 2 tables, while the enclosed
surface identifies the probability distributions satisfying the equation p11p22 = p12p21 , i.e.,
the toric variety for the model of independence.

Denote by R4
p the four-dimensional real space with coordinates p = (p11 , p12 , p21 ,

p22). Geometrically, p is a point lying in a three-dimensional simplex (tetrahedron):

p ∈ ∆3 = {(p11 , p12 , p21 , p22) : pij ≥ 0,
∑

i,j

pij = 1}.

In barycentric coordinates, this tetrahedron of reference has vertices A1 =
(1, 0, 0, 0), A2 = (0, 1, 0, 0), A3 = (0, 0, 1, 0), and A4 = (0, 0, 0, 1); see Figure 3.1.
When the observed counts, n = {nij}, come from a multinomial distribution,
Multi(N,p), we refer to ∆3 as a full parameter space. If we consider a different
parametrisation, the parameter space Θ parametrises a related surface.

The marginal probability distributions for X and Y are pX = (p1+ , p2+) =
(s, 1 − s) and pY = (p+1 , p+2) = (t, 1 − t). The lines A1A3 and A2A4 in the
tetrahedron represent the set of all probability distributions, p = (s, 0, 1− s, 0) and
p = (0, s, 0, 1 − s) whose joint distributions are equivalent to the marginal distri-
bution of pX = (s, 1 − s). Similarly, the lines A1A2 and A3A4 represent the set of
all probability distributions, p = (t, 1 − t, 0, 0) and p = (0, 0, t, 1 − t), whose joint
distributions are equivalent to the marginal distribution of pY = (t, 1 − t).

We represent the conditional probability distributions, pX|Y and pY |X , by 2 × 2
conditional probability matrices C = (cij ) and R = (rij ), and denote by R4

c and
R4

r the four-dimensional real spaces with coordinates c = (c11 , c12 , c21 , c22) and r =
(r11 , r12 , r21 , r22), respectively. Given that we have observed Y = j, the conditional
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probability values are cij = P (X = i|Y = j) = pij /p+j , such that
∑2

i=1 cij = 1, j =
1, 2, and

C =
(

c11 c12

c21 c22

)
.

Given that we have observed X = i, the conditional probability values are rij =
P (Y = j|X = i) = pij /pi+ such that

∑2
j=1 rij = 1, i = 1, 2, and

R =
(

r11 r12

r21 r22

)
.

Defined as such, the conditional probabilities can be considered as two-dimensional
linear fractional transformations of either the cell counts or the cell probabili-
ties. Recall that two-dimensional linear fractional transformations take the form
g(x, y) = (axy + cx + ey + g)/(bxy + dx + fy + h), e.g., r11 = g(n11 , n12) =
n11/(n11 + n12). The joint distribution p has the columns of C and rows of R as its
conditional distributions. In the next section we provide a more careful geometric
description of these conditionals.

We can now write the odds ratio or cross-product ratio for a 2 × 2 table

α =
p11p22

p12p21
=

c11c22

c12c21
=

r11r22

r12r21
. (3.1)

The odds ratio α is the fundamental quantity that measures the association in the
2×2 table whether we think in terms of probabilities that add to 1 across the entire
table or conditional probabilities for rows, or conditional probabilities for columns.
We can define two other odds ratios as follows:

α∗ =
p11p12

p22p21
=

c11c12

c22c21
, (3.2)

α∗∗ =
p11p21

p12p22
=

r11r21

r12r22
. (3.3)

Here α∗ is characterised by the column conditionals and α∗∗ by the row conditionals.
If we use the usual saturated log-linear model parametrization for the cell prob-

abilities, e.g., see (Bishop et al. 1975) or (Fienberg 1980):

log pij = u + u1(i) + u2(j ) + u12(ij )

where
∑2

i=1 u1(i) =
∑2

j=1 u2(j ) =
∑2

i=1 u12(ij ) =
∑2

j=1 u12(ij ) = 0, then it turns
out that u1(1) = 1

4 logα∗, u2(1) = 1
4 logα∗∗, and u12(11) = 1

4 logα. Thus we can use
the three odds ratios in Equations (3.1), (3.2), and (3.3) to completely characterise
the standard saturated log-linear model, and thus the joint distribution p.

3.3 Parameter surfaces and other loci for 2 × 2 tables

(Fienberg and Gilbert 1970) show that (a) the locus of all points corresponding to
tables with independent margins is a hyperbolic paraboloid (Figure 3.1), (b) the
locus of all points corresponding to tables with constant degree of association, α,
is a hyperboloid of one sheet (Figure 3.2), and (c) the locus of all points corre-
sponding to tables with fixed both margins is a line. Clearly, the other odds ratios
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in Equations (3.2) and (3.3) correspond to tables with constant column and row
‘effects’, respectively, and their surfaces are also hyperboloids of one sheet. All of
these surfaces lie within the simplex ∆3 .

Fixing marginals implies imposing sets of linear constraints on the cell counts
or the cell probabilities. We can fully specify log-linear models for the vector p of
cell probabilities by a 0-1 design matrix A, in the sense that, for each p in the
model, log p belongs to the row span of A. The surface of independence, which
geometrically represents the independence model, corresponds to the Segre variety
in algebraic geometry (Figure 3.1). If we consider a knowledge of a single marginal,
then the vector p is geometrically described by an intersection of a plane with the
simplex, ∆3 . For example, fix the marginal pX . Then the plane, πX , is defined by

A =
(

1 1 0 0
0 0 1 1

)
, t =

(
s

1 − s

)
. (3.4)

Similarly, we can define the plane πY for the fixed marginal pY .
Now consider a set of linear constraints on the cell probabilities imposed by fixing

conditional probabilities and clearing the denominators for the values from the
matrix R (analogously from C). Then the vector p can be specified by a constraint
matrix A and a vector t of the following form:

A =




1 1 1 1

r12 −r11 0 0
0 0 r22 −r21



 , t =




1
0
0



 .

In the related sample space of integer-valued tables, the constraint matrix A can
also be constructed by using the observed conditional frequencies, or relevant ob-
served cell counts, but adding the parameter N for the sample size as follows:

A =




1 1 1 1

n12 −n11 0 0
0 0 n22 −n21



 , t =




N
0
0



 .

Hence, any contingency table with fixed marginals and/or conditional probability
values is a point in a convex polytope defined by a linear system of equations induced
by observed marginals and conditionals. An affine algebraic variety is the common
zero set of finitely many polynomials. Thus our problem of finding the loci of all
possible tables given an arbitrary set of conditionals and marginals for 2× 2 tables
translates into an algebraic problem of studying zero sets in R4

p .
In the next section we derive the geometric description of the parameter space

of p for fixed values of conditional probabilities defined by matrices C and R.

3.3.1 Space of tables for fixed conditional probabilities

Consider a system of linear equations for four unknowns, p11 , p12 , p21 , p22 , imposed
by observing or fixing conditional probabilities defined by the matrix R.
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Proposition 3.1 The locus of probability distributions p for a 2×2 table satisfying
a set of conditional probability distributions defined by R is a ruling of two surfaces
of constant associations, α and α∗∗.

Proof Let fp,r : R4
p \ W → πr be the map given by rij = pij /pi+ , where W is a

union of two varieties, W = V (〈p11 +p12〉)∪V (〈p21 +p22〉). Since
∑2

j=1 pij /pi+ = 1,
i = 1, 2, the image of f is contained in the plane πr ⊂ R4

r of equations r11 + r12 =
1, r21 + r22 = 1, and we can represent a point r in this plane by the coordinates
r = (r11 , r22). Then the preimage of a point r ∈ πr , f−1(r), is the plane in R4

p of
equations (1 − r11)p11 − r11p12 = 0 and −r22p21 − (1 − r22)p22 = 0.

Since we are interested in p, we restrict the function fp,r on the simplex ∆3 . The
intersection ∆3 ∩ V (〈p11 + p12〉) is the face 12, that is the line A1A2 consisting of
the points of the form p = (s, 0, 1− s, 0). Similarly, ∆3 ∩ V (〈p21 + p22〉) is the face
34 consisting of the points of the form p = (0, s, 0, 1 − s). With W̃ = 12 ∪ 34, the
map becomes f̃p,r : ∆3 \ W̃ → πr . Observe that the condition for the p to lie in
∆3 \ W̃ forces 0 ≤ r11 ≤ 1 and 0 ≤ r22 ≤ 1 such that f̃p,r : ∆3 \ (W̃ ) → ∆1 × ∆1 .
Thus the preimage of a point r ∈ πr , f̃−1(r), is the segment in ∆3 of equations

V∆3 := {(r11s, (1 − r11)s, (1 − r22)(1 − s), r22(1 − s)) : 0 < s < 1}.

Finally take the closure of V for a given r,

V ∆3 ,r := {(r11s, (1 − r11)s, (1 − r22)(1 − s), r22(1 − s)) : 0 ≤ s ≤ 1,fixed r}, (3.5)

and parametrise the probability variety by the probability of the margin s we con-
dition upon.

By taking the closure of V we can understand what is happening with points
p in the closure of the parameter space; that is, the points of W̃ . If s = 0 we
obtain a point T ∗ = (0, 0, (1 − r22), r22) on the line A3A4 , while if s = 1 we obtain
a point T = (r11 , 1 − r11 , 0, 0) on the line A1A2 . The point T ∗ is in the closure
of the preimage of every point in ∆1 × ∆1 of the form (t, r22), 0 ≤ t ≤ 1. As
t varies, the preimage of (t, r22), that is the segment TT ∗, represents a ruling of
the surface with different odds ratio; see Figure 3.2. All these rulings pass through
the same point (t, r22). Recall from Equations (3.1) and (3.3) that the conditional
distributions from R define the association coefficients α and α∗∗. For a fixed value
of r-parameter, as we vary the values of s, the segment defined in Equation (3.5)
belongs to a family of lines that determine the surface of constant association α,
which we denote as Sα . They are also rulings for the surface of constant association
defined by α∗∗, that is of Sα∗∗ .

In a similar way, we define the map fp,c : R4
p \ W ′ → πc given by cij = pij /p+i ,

where W ′ = V (〈p11 + p21〉)∪ V (〈p12 + p22〉) and πc the plane πc ⊂ R4
c of equations

c11 + c21 = 1, c12 + c22 = 1. The segment with coordinates

V ∆3 ,c = {(c11t, (1 − c22)(1 − t), (1 − c11)t, c22(1 − t)) : 0 ≤ t ≤ 1,fixed c}, (3.6)

represents an equivalence class with fixed value of the matrix C that is the c-
parameter. Thus the lines SS∗ are the second set of rulings for the surface of
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Fig. 3.2 Surface of constant association α = 6. The line SS∗ represents all probability
distributions p = (p11 , p12 , p21 , p22 ) satisfying fixed c-conditional parameter. The line TT ∗

represent all probability distributions p = (p11 , p12 , p21 , p22 ) satisfying fixed r-conditional
parameter.

constant association, α, and also rulings for the surface of association defined by
α∗.

If X and Y are independent, then pY |X = pY and pX|Y = pX . Thus, we confirm
the result of (Fienberg and Gilbert 1970), who state that for surface of independence
(α = 1, see Figure 3.1), the rulings are two families of straight lines corresponding
to constant column and row margins.

In the following sections we use the above described measures and their geometry,
and consider the geometric interpretation of the Uniqueness Theorem, see (Gelman
and Speed 1993, Arnold et al. 1996, Arnold et al. 1999), and complete specification
of joint distribution via log-linear models. A geometric interpretation of incomplete
specification of the joint distribution p is also considered.

3.4 Complete specification of the joint distribution

When we examine observed 2 × 2 tables, our statistical goal is usually to make
inferences about the joint distribution of the underlying categorical variables, e.g.,
finding estimates of and models for p. In this section, we discuss possible complete
specifications of the joint distribution and give their geometric interpretations. In
Section 3.5, we turn to incomplete specifications, i.e., reduced models.

3.4.1 Specification I

From the definition of conditional probability, we know that the joint distribution
for any 2×2 table is uniquely identified by one marginal and the related conditional:

P (X,Y ) = P (X)P (Y |X) = P (Y )P (X|Y ),

or equivalently pij = pi+rij = pj+cij .



70 A. B. Slavković and S. E. Fienberg

fixed py/x

fixed px

Fig. 3.3 Specification I. The intersection of the simplex ∆3 , the line for fixed r, and the
plane πX , is a fully specified joint distribution p.

We can use the geometric representations in Section 3.3 to demonstrate this
uniqueness. For example, consider the locus of points p for fixed r as described by
V ∆3 ,r in Equation (3.5); see the line segment in Figure 3.3. The other locus of points
p is a plane πX defined by (3.4) observing a specific value of s corresponding to
p1+ . The intersection of ∆3 with these two varieties is a unique point representing
the joint distribution p. This is a geometric description of the basic factorisation
theorem in statistics.

3.4.2 Specification II

The joint distribution for a 2 × 2 table is also fully specified by knowing two sets
of conditionals: pX|Y and pY |X , equivalent to Specification I under independence
of X and Y . Note that this is the simplest version of the Hammersley–Clifford
theorem, see (Besag 1974).

Its geometric representation is the intersection of lines representing p for fixed
pY |X and pX|Y (Figure 3.2). It is an intersection of two varieties defined by Equa-
tions (3.5) and (3.6), V ∆3 ,r ∩ V ∆3 ,c . Specifically, it is a point on the surface of
the constant association, α, identifying the unique table given these conditional
distributions.

Lemma 3.1 The specification of joint distribution p by two sets of conditional
parameters, r and c, is equivalent to its specification by a saturated log-linear model.

Proof Based on Proposition 3.1, each conditional includes full information on two
out of three odds ratios; r has full information on α and α∗∗, while c has information
on α and α∗. As seen at the end of Section 3.2 all three odds ratios together represent
the key parameters of the saturated log-linear model and thus they fully characterise
the joint distribution for a 2 × 2 table.

This specification is clearly implicit in many treatments of log-linear models and
2 × 2 tables, e.g., see (Fienberg 1980), but to our knowledge has never been made
explicit. We discuss further related specifications with odds ratios in Section 1.4.4.



Algebraic geometry of 2 × 2 contingency tables 71

fixed py/x

fixed py

Fig. 3.4 Specification III. The intersection of the simplex ∆3 with the line segment and
the plane is a fully specified joint distribution p.

3.4.3 Specification III

(Arnold et al. 1996, Arnold et al. 1999) show that sometimes a conditional and the
‘wrong’ marginal (e.g., pY |X and pY ) also uniquely identify the joint distribution,
provided Arnold’s positivity condition. Here the geometric representation of p lies
in the intersection of simplex ∆3 with V ∆3 ,r , see Equation (3.5) and Figure 3.4, and
the plane πY , see Section 3.3. For 2 × 2 tables, this result always holds and states
that for two dependent binary random variables, X and Y, either the collection
{pX|Y , pX} or {pY |X , pY} uniquely identifies the joint distribution.

If the matrix p = (pij ) has rank 1, X and Y are independent and this implies
that common odds ratio α = 1. Since conditional distributions also preserve α, this
implies that the ranks of matrices C = (cij ) and R = (rij ) are also both 1. Thus
any rank greater than 1 implies a dependence between X and Y . Specifically for
2× 2 tables, when the conditional matrices have full rank, X and Y are dependent
random variables. We redefine the result on the uniqueness of the joint distribution.

Proposition 3.2 For two binary discrete random variables, X and Y , either col-
lection {pX|Y ,pX} or {pY |X ,pY} uniquely identifies the joint distribution if the
conditional matrices C = (cij ) and R = (rij ) have full rank.

Proof Consider pX = (p1+ , p2+) = (s, 1 − s) and pX|Y = (c11 = p11/p+1 , c21 =
p21/p+1 , c12 = p12/p+2 , c22 = p22/p+2). Recall that we are assuming that there
exists a joint probability distribution p from which pX|Y and pX are derived, and
thus they are compatible. Imposing pij ∈ [0, 1] requires that either 0 ≤ c11 ≤ s ≤
c12 ≤ 1 or 0 ≤ c12 ≤ s ≤ c11 . If the conditional matrix C has a full rank there are
two linearly independent equations from observing pX|Y that describe relationships
on the cell probabilities (pij ). If C has a full rank this implies that the marginal
array pX also has a full rank, and there are two additional linearly independent
constraints describing relationships among the (pij ).

Consider the ideal I generated by the four polynomials obtained after clearing
the denominators in the ratios defining relationships between the conditionals cij ’s
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Table 3.2 Representation of the joint distribution p as a function of the
pX = (s, 1 − s) and the conditional pX|Y = (c11 , c12 , c21 , c22).

Y1 Y2

X1
c 1 1 (c 1 2 −s)

c 1 2 −c 1 1

−c 1 2 (c 1 1 −s)
c 1 2 −c 1 1

X2
c 1 2 + sc 1 1 −s−c 1 1 c 1 2

c 1 2 −c 1 1

(c 1 1 −s)((c 1 2 −1)
c 1 2 −c 1 1

and cell probabilities pij ’s, namely p11 + p12 − s, p21 + p22 − 1 + s, (1 − c11)p11 −
c11p21 , c12p22 − (1− c12)p12 . Then a Gröbner basis of I using lexicographic order is
{p21+p22+s−1, p11+p12−s, p12c12+p22c12−p12 , p12c11+p22c11−p12+sc11 , p22c11−
p22c12 − sc12 + c11c12 + s − c11}. Set these polynomials equal to zero. Then, (1)
if c11 ,= c12 , matrix C has a full rank, and the equivalent unique solution is given
in Table 3.2; and (2) if c11 = c12 , then c11 = 1 or c11 = s. When c11 = c12 = s,
we have independence of X and Y . However, if c11 = c12 = s = 1 then p is not
identifiable. In this case the matrix C does not have a full rank and conditions of
the proposition are not satisfied. Furthermore, p = pY and solutions would lie on
the face A1A2 or A3A4 of the simplex ∆3 (see Figure 3.1).

(Slavkovic 2004) derived a result similar to that in Theorem 4.2. but for I × 2
tables. This characterisation is far more subtle than the previous two and we have
not found it in any other setting.

3.4.4 Odds-ratio specification

In Section 3.2 we showed that all three odds ratios, α,α∗, and α∗∗ together represent
the key parameters of the saturated log-linear model: log pij = u + u1(i) + u2(j ) +
u12(ij ) . That is u12(11) = 1

4 log α, u1(1)=
1
4 log α∗, and u2(1) = 1

4 log α∗∗, and thus they
too specify the joint distribution for 2 × 2 tables. If we add a representation for
the ‘constant’ term, i.e., u = 1

4 log(p11p12p21p22), then the implicit representation
of the joint distribution is defined by simultaneously solving the equations from

V∆3 = (p11p22 − αp12p21 , p11p12 − α∗p21p22 , p11p21 − α∗∗p12p22). (3.7)

Let r1 = p11/p12 = r11/r12 and r2 = p21/p22 = r21/r22 be the row odds.
The column odds are c1 = p11/p21 = c11/c21 and c2 = p12/p22 = c12/c22 .
(Kadane et al. 1999) gave an alternative parametrisation to the one given by Equa-
tion (3.7), and showed in the context of capture–recapture type problems that it
is sufficient to have α and the odds, r1 and c1 to identify the joint distribution. In
this setting, r1 are the odds of a unit being counted twice given that it was counted
in the first sample, and c1 is the odds of a unit being counted twice given that the
same unit was counted in the second sample.

Geometrically, the intersection of the probability simplex, ∆3 , with two surfaces
of constant associations is a line segment that would be defined by a fixed set of
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Table 3.3 Representation of the joint distribution p as a function of the margins
pX = (s, 1 − s) and pY = (t, 1 − t), and the odds ratios, α,α∗ and α∗∗.

Y1 Y2

X1

√
αα∗∗

1+
√

αα∗∗ s =
√

αα∗

1+
√

αα∗ t 1
1+

√
αα∗∗ s = α∗

α∗+
√

αα∗ (1 − t)

X2
α∗∗

α∗∗+
√

αα∗∗ (1 − s) = 1
1+

√
αα∗ t

√
αα∗∗

α∗∗+
√

αα∗∗ (1 − s) =
√

αα∗

α∗+
√

αα∗ (−t)

conditional probabilities as we saw in Section 3.3.1. This line is one of the rul-
ings for each of the respective hyperbolic surfaces for joint distributions p with
constant associations. The observation naturally leads to an equivalence statement
about Specification I and the following two sets of parameters: (1) {pX ,α,α∗∗}
and (2) {pY ,α,α∗}. Let {pX ,pY |X} and {pY ,pX|Y} uniquely identify the joint
distribution p. Then the following lemma holds:

Lemma 3.2 For a 2×2 table, the specification of p by {pX ,pY |X} is equivalent to
characterisation by {pX ,α,α∗∗}, and {pY ,pX|Y} is equivalent to characterisation
by {pY ,α,α∗}.

Proof The two odds ratios will completely specify the missing conditional distribu-
tions on the probability simplex (cf. Section 3.4), and thus completely specify the
joint distribution. Consider the two ideals generated by

p11 + p12 − s, p21 + p22 − 1 + s, p11p22 − αp12p21 , p11p12 − α∗p21p22

and

p11 + p21 − t, p12 + p22 − 1 + t, p11p22 − αp12p21 , p11p21 − α∗∗p12p22 .

Finding the Gröbner basis, and setting the defining polynomials equal to zero results
in the solution in Table 3.3. More specifically, the probabilities pij = g(α,α∗∗)pX =
h(α,α∗)pY where g, and h are functions of the three odds ratios given in Table 3.3.

If α = 1, p = {
√

α∗∗

1+
√

α∗∗ s, 1
1+

√
α∗∗ s, α∗∗

α∗∗+
√

α∗∗ (1 − s),
√

α∗∗

α∗∗+
√

α∗∗ (1 − s)}. Clearly

pX|Y = pX , and pY = {
√

α∗∗

1+
√

α∗∗ , 1
1+

√
α∗∗ } and we have independence of X and Y . If

α = α∗∗ = 1 then the joint distribution p is identified as { 1
2 s, 1

2 s, 1
2 (1−s), 1

2 (1−s)}.
Notice that if s = 1 then c11 = c12 = s = 1 and p is not identifiable. Furthermore,
p = pY and potential solutions would lie on the face A1A2 or A3A4 of the simplex
∆3 . Similar considerations can be made for t,α, and α∗.

This specification is related to the parametrisation given by (Kadane et al. 1999).
Then the following sets of parameters will also uniquely identify the joint distribu-
tion: (3) {pX ,α, r1} and (4) {pY ,α, c1}. These characterisations are different from
any previously described in the literature and may be of special interest to those
attempting to elicit joint distributions via components in a Bayesian context.
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3.4.5 Specification via the non-central hypergeometric distribution

Finally we point out a well-established fact in statistical literature that both sets
of one-way marginals, pX and pY , and the odds-ratio, α give a complete speci-
fication of the joint probability distribution p via the non-central hypergeometric
distribution. Within ∆3 , as shown in (Fienberg and Gilbert 1970), the locus of joint
probability distributions p given {pX , pY} is a line segment. This line segment in-
tersects the hyperboloid specified by α in a unique point V∆3 ,s,t,α with coordinates

{(
st, s(1 − t),

(1 − s)t
α(1 − t) + t

,
α(1 − s)(1 − t)

α(1 − t) + t

)
: fixed s, t,α

}
.

3.5 Incomplete specification of the joint distribution

Statistical models come from restricting values of one or more parameters and
focusing on subspaces. A natural question arises as to the specification of the joint
distribution if one of the parameters from the complete specification is set to zero
or missing. For example, setting α = 1 in Equation (3.7) defines the model of
independence which corresponds to a hyperbolic paraboloid surface and the Segre
variety in Figure 3.1.

3.5.1 Space of tables for a fixed marginal and odds-ratio

As noted in Section 3.4.5, both sets of one-way marginals and the odds-ratio,
{pX ,pY ,α} give a complete specification of p via the non-central hypergeomet-
ric distribution. In this section we consider the specification if one of the margins
is missing.

Partial specification of the joint probability distribution p based solely on one
odds-ratio, e.g., α, is an intersection of a hyperbolic surface with the probability
simplex ∆3 , see (Fienberg and Gilbert 1970); knowledge of odds-ratio also specifies
the locus of conditional distributions (see Section 1.5.2). Partial specification via
one margin and α yields points lying on the intersection of a hyperbola and the
probability simplex ∆3 :

V∆3 ,s,α =
{(

st, s(1 − t),
(1 − s)t

α(1 − t) + t
,
α(1 − s)(1 − t)

α(1 − t) + t

)
: 0 ≤ t ≤ 1,fixed s,α

}
(3.8)

as shown in Figure 3.5. This is a rational parametric representation requiring that
α(1 − t) + t ,= 0 and it implies not conditioning on the event of probability zero.

3.5.2 Space of conditional tables

Proposition 3.3 The locus of conditional distributions r or c, given a fixed odds-
ratio lies in the intersection of a quadric with the plane πr or πc , respectively.
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A4

A3

A2

A1

fixed px & alpha

fixed py & alpha

Fig. 3.5 Incomplete specification of the joint distribution p is given by the intersection of
the simplex ∆3 with the curve defined by one marginal and odds-ratio.
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Fig. 3.6 Specification of the conditional distribution pY |X lies in the intersection of a
quadric and πr .

We treat the case of α and r and c, but the α∗∗ or α∗ with either r or c would
work in a similar way.

Proof Fix the odds-ratio α. Recall that the joint probabilities p satisfying the
odds-ratio lie on the intersection of the hyperbolic surface Sα and ∆3 where Sα :=
V (〈p11p22−αp12p21〉) and α = p11p22/p12p21 = r11r22/r12r21 . Restrict our attention
on the plane πX . A bijection f̃πX : πX → πr given by

(
r11

r22

)
=

( 1
s 0
0 1

1−s

)(
p11

p22

)

is the restriction of f̃ to the plane πX . The image of surface Sα under the map f̃ is
the curve

Cr,α := V (〈α(1 − r11)(1 − r22) − r11r22〉)

which is clearly the intersection of a quadric with the plane πr . Similar derivation
can be done for the intersection of a quadric and the plane πc defined by the
equation α(1 − c11)(1 − c22) = c11c22 .
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Once we fix a plane πX , the curve Cr,α is in the bijection with the curve Sα ∩πX .
Note that this bijection exists only when you fixed a specific plane πX which is
needed to define a conditional distribution. In fact, a point r on the curve Cr,α has
as preimage the segment V ∆3 ,r defined by Equation (3.5). Once we fix a plane πX ,
the preimage of r is exactly the point determined by the intersection V ∆3 ,r ∩ πX .
If we fix another plane π′

X , the preimage of r will be another point in V ∆3 ,r but
given by the intersection V ∆3 ,r ∩ π′

X . This corresponds with the fact that, given
a conditional distribution pY |X (i.e., a point r) and a marginal pX (i.e., a plane
πX ) the probabilities of p are uniquely determined (the point in the intersection
V ∆3 ,r ∩ πX ).

From the above we directly derived the corresponding probability variety given
in Equation (3.8).

3.5.3 Margins

If we are given the row and column totals, then the well-known Fréchet bounds for
the individual cell counts are:

min(ni+ , n+j ) ≥ nij ≥ max(ni+ + n+j − n, 0) for i = 1, 2, j = 1, 2.

The extra lower bound component comes from the upper bounds on the cells
complementary to (i, j). These bounds have been widely exploited in the disclo-
sure limitation literature and have served as the basis for the development of
statistical theory on copulas (Nelsen 2006). The link to statistical theory comes
from recognizing that the minimum component ni+ + n+j − n corresponds to the
MLE of the expected cell value under independence, ni+n+j /n. For further details
see (Dobra 2001, Dobra 2003) and Chapter 8 in this volume.

Geometric interpretation corresponds to fixing pX and pY , that is restricting
the parameter space to the intersection of ∆3 with πX and πY , respectively (see
Section 1.3). The points p then lie in intersection of ∆3 with the segment πX ∩ πY

given by Cs,t := V (〈p11 − p22 − (s + t − 1)〉).

3.5.4 Two odds-ratios

In this section we address the question of specification of the joint probability distri-
bution p when we have two odds ratios, e.g. α and α∗. This is the case when we are
missing the marginal from the log-linear model specification, e.g., non-hierarchical
log-linear model. We treat the case with α and α∗∗, but α∗ would work in a sim-
ilar way. This characterisation is related to the specifications of p discussed in
Section 1.4.4, and results in Table 1.2. (Carlini and Rapallo 2005) describe an anal-
ogous question but with application to case-control studies.
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Lemma 3.3 The points p with given α and α∗∗ lie in the intersection of ∆3 with
the line segment defined by

Vα ,α∗∗ :=
{

s
√

αα∗∗
√

αα∗∗ + 1
,

s√
αα∗∗ + 1

,

√
α∗∗(1 − s)

√
α1 +

√
α∗∗

,

√
α(1 − s)

√
α +

√
α∗∗

|0 < s < 1

}
. (3.9)

We first note that the partial specification based solely on two odds ratios
uniquely specifies the missing conditional. We used this result in the proof of Lemma
2 in Section 1.4.4.

Proof The points in the plane πr with the given odds ratio lie on two curves, Cr,α :=
V (〈α(1− r11)(1− r22)− r11r22〉) and Cr,α∗∗ := V (〈α∗∗(1− r11)r22 − r11(1− r22)〉)
(see Section 1.5.2), whose intersection, Cr,α ∩ Cr,α∗∗ , consists of two points:

r11 =
√

αα∗∗

1+
√

αα∗∗ r12 = 1
1+

√
αα∗∗

r21 =
√

α∗∗
√

α+
√

α∗∗ r22 =
√

α√
α+

√
α∗∗

or

r11 =
√

αα∗∗

−1+
√

αα∗∗ r12 = − 1
−1+

√
αα∗∗

r21 = −
√

α∗∗
√

α−
√

α∗∗ r22 =
√

α√
α−

√
α∗∗

The second point does not represent conditional probabilities since it has two
negative coordinates. The preimage of the other point is the segment given by
Equation (3.9) which consists of points p in the intersection of the surfaces (in ∆3)
Sα := V (〈p11p22 −αp12p21〉) and Sα∗∗ := V (〈p11p21 −α∗∗p12p22〉); that is, points p
with given odds ratios α and α∗∗. The set Vα ,α∗∗ corresponds to points on a ruling
for each surface Si .

These line segments are the rulings discussed in Section 3.3.1, and thus describe the
equivalent segments as when we fix the conditional, in this case, the r-conditional
(see Figure 3.2).

3.6 Extensions and discussion

The geometric representation described in Section 1.3.1 about the space of tables
given fixed conditionals extend to I×J tables via linear manifolds. The specification
results on p also generalise, in part (e.g., using pY |X and pX ), but when we are
given margins we need to define multiple odds ratios. The bounds are also directly
applicable to I × J tables and essentially a related argument can be used to derive
exact sharp bounds for multi-way tables whenever the marginal totals that are
fixed correspond to the minimal sufficient statistics of a log-linear model that is
decomposable.

The natural extension to k-way tables is via log-linear models and understanding
the specifications via fixed margins and combinations of margins and odds ratios,
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and ratios of odds ratios. For I × J × K tables, we use a triple subscript notation
and we model the logarithms of the cell probabilities as

log(pijk ) = u + u1(i) + u2(j ) + u3(k) + u12(ij ) + u13(ik) + u23(jk) + u123(ijk) (3.10)

where we set the summation of a u-term over any subscript equal to 0 for identifi-
cation. There is a one-to-one correspondence between the u terms and odds ratio.
For example, for 2 × 2 × 2 tables, we can rewrite the parameters as a function of
the logarithm of the cell probabilities

u123(111) =
1
8

log
(

α(1)

α(2)

)
(3.11)

where α(k) = p11kp22k/p12kp21k . See (Bishop et al. 1975, Chapter 2) for further
details. The toric variety corresponding to the model of no second-order interaction,
i.e., u123(ijk) = 0 for i, j, k = 1, 2, is a hyper-surface with three sets of generators
corresponding to the first-order interactions, p11kp22k − α(k)p12kp21k , p1j1p2j2 −
α(j )p1j2p2j1 , pi11pi22 − α(i)pi12pi21 , such that α(i=1) = α(i=2), α(j=1) = α(j=2),
α(k=1) = α(k=2). Each of the other subscripted u-terms in the log-linear model of
Equation (3.10) can also be represented in terms of a ratio of odds ratios of the
form of Equation (3.11).

3.6.1 Simpson’s paradox

For three events A, B, and C, (Simpson 1951) observed that it was possible
that P (A|B) < P (A|B̄) (where B̄ is the complementary set of B) but that
P (A|BC) > P (A|B̄C) and P (A|BC̄) > P (A|B̄C̄). This became known as Simp-
son’s paradox although (Yule 1903) had made a similar observation 50 years ear-
lier. For an extensive discussion of related aggregation phenomena, see (Good and
Mittal 1987) and for an early geometrical treatment see (Shapiro 1982). As many
authors have observed, another way to think about Simpson’s paradox is as the
reversal of the direction of an association when data from several groups are com-
bined to form a single group. Thus for a 2× 2× 2 table we are looking at three sets
of 2× 2 tables, one for each level of the third variable and another for the marginal
table, and we can display all three within the same simplex ∆3 .

Consider the model of complete independence for a 2 × 2 × 2 table:

log pijk = u + u1(i) + u2(j ) + u3(k)

where u12(ij ) = u13(ik) = u23(jk) = u123(ijk) = 0, for i, j, k = 1, 2 that is the
corresponding odds ratios and ratios of odds ratios are all equal to 1. Now consider
the marginal 2 × 2 table with vector of probabilities p = (pij+). The complete
independence model implies marginal independence, i.e., log pij+ = v+v1(i) +v2(j ) ,
so that the marginal odds ratios α12=1, and p would be a point on the surface of
independence.

Next suppose that variables 1 and 2 are conditionally independent given 3, i.e.,
log pijk = u+u1(i) +u2(j ) +u3(k) +u13(ik) +u23(jk) . The marginal odds ratio α12 ,= 1,
but the two conditional odds ratios for each level of the third variable equal one,
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OR = 2.56. OR = 1.67..
OR = 0.519

Fig. 3.7 An example of Simpson’s paradox. Two dots with odds ratios (OR) > 1 are
conditional 2 × 2 tables and on the same side of surface of independence. The p with
odds-ratio (OR) < 1 is the marginal 2 × 2 table.

that is α12(3) = 1, and p12|3 would be two points on the surface of independence.
When we connect such two points on the surface of independence, the line segment
corresponds to tables with either positive association or negative association. This
is the boundary for the occurrence of Simpson’s paradox.

Simpson’s paradox occurs when we have two tables corresponding to points lying
on one side of the surface of independence, but the line segment connecting them
cuts the surface and includes points on the ‘other side’. Figure 3.7 gives one such
example. If we put a probability measure over the simplex, we could begin to discuss
‘the probability of the occurrence of Simpson’s paradox,’ cf. (Hadjicostas 1998).

When we connect two points lying on the surface of independence then we are
combining two different independence models and the line connecting them will
either consists of all weighted combinations of the two tables, or in the sense de-
scribed above, all possible marginal tables. These will either all have values of α > 1
or values of α < 1 unless the two original tables being combined share either row
or column margins, in which case α = 1. The locus of all possible such lines corre-
sponds to the k = 2 latent class model described in Chapter 2 in this volume and
it consists of the entire simplex ∆3 .

3.7 Generalisations and questions

In this chapter we have employed an algebraic geometric approach to describe a va-
riety of characterisations, both complete and incomplete, of bivariate distributions
for two categorical variables. We have updated some older geometric representations
of 2 × 2 contingency tables, e.g., from (Fienberg and Gilbert 1970), and we have
described a series of new characterisations of the joint distribution using arbitrary
sets of margins, conditionals, and odds ratios. We also considered incomplete char-
acterisations of the joint distribution, and their links to latent class models and to
Simpson’s paradox. Many of the ideas explored here generalise rather naturally to
I × J and higher-way tables. For higher-way tables, the usual characterisations
corresponding to log-linear models come in terms of specifying marginal totals
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(minimal sufficient statistics) and setting various sets of generalised odds ratios
equal to zero. The number of such specifications grows dramatically with the di-
mensionality of the table.

Many questions remain to be explored; e.g. (i) What are the partial specifications
arising from subset of ratio of odds ratios? (ii) When are subsets of odds ratios
implied by conditionals? (iii) When do combinations of margins and conditionals
reduce to higher-order margins? (iv) What are the implications of such results
for bounds in contingency tables? About question (iv), see also Chapter 8 in this
volume.
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dell’Università di Trieste 37, 71–84.

De Rooij, M. and Anderson, C.J. (2007). Visualizing, summarizing, and comparing odds
ratio structures, Methodology 3, 139–48.

De Rooij, M., and Heiser, W. J. (2005). Graphical representations and odds ratios in
a distance-association model for the analysis of cross-classified data, Psychometrika
70, 99–123.

Diaconis, P. (1977). Finite forms of de Finetti’s theorem on exchangeability, Synthese
36, 271–81.

Diaconis, P. and Sturmfels, B. (1998).Algebraic algorithms for sampling from conditional
distributions, Annals of Statistics 26(1), 363–97.

Dobra, A. (2001). Statistical tools for disclosure limitation in multi-way contingency tables.
PhD thesis, Department of Statistics, Carnegie Mellon University.

Dobra, A. (2003). Markov bases for decomposable graphical models, Bernoulli 9(6), 1–16.
Edgeworth, F. Y. (1914). On the use of analytical geometry to represent certain kinds of

statistics, Journal of the Royal Statistical Society 77, 838–52.
Erosheva, E. A. (2005). Comparing latent structures of the grade of membership, Rasch,

and latent class models, Psychometrika 70, 619–28.
Fienberg, S. E. (1968). The geometry of an r×c contingency table, Annals of Mathematical

Statistics 39, 1186–90.



Algebraic geometry of 2 × 2 contingency tables 81

Fienberg, S. E. (1970). An iterative procedure for estimation in contingency tables, Annals
of Mathematical Statistics 41, 907–17. Corrigenda 42, 1778.

Fienberg, S. E. and Gilbert, J. P. (1970). The geometry of a two by two contingency table,
Journal of the American Statistical Association 65, 694–701.

Fienberg, S. E. (1980). The Analysis of Cross-Classified Categorical Data 2nd edn
(Cambridge, MA, MIT Press). Reprinted (2007) (New York, Springer-Verlag).

Fisher, R. A. (1921). On the interpretation of χ2 from contingency tables, and the calcu-
lation of P, Journal of the Royal Statistical Society 85, 87–94.

Flach, P. A. (2003). The geometry of ROC space: understanding machine learning metrics
through ROC isometrics, In Proc. ICML-2003, Washington DC, 194–201.

Gelman, A. and Speed, T. P. (1993). Characterizing a joint probability distribution by con-
ditionals, Journal of the Royal Statistical Society. Series B 55, 185–8. Corrigendum
6, 483 (1993).

Good, I. J. and Mittal, Y. (1987). The amalgamation and geometry of two-by-two con-
tingency tables, Annals of Statistics 15, 694–711. Addendum 17, 947 (1989).

Greenacre, M. and Hastie, T. (1987). The geometric interpretation of correspondence
analysis, Journal of the American Statistical Association 82, 437–47.

Hadjicostas, P. (1998). The asymptotic proportion of subdivisions of a 2 × 2 table that
result in Simpson’s paradox, Combinatorics, Probability and Computing 7, 387–96.

Heiser, W. J. (2004). Geometric representation of association between categories, Psy-
chometrika 69, 513–45.

Kadane, J. B., Meyer, M. M. and Tukey, J. W. (1999). Yule’s association paradox and
ignored stratum heterogeneity in capture-recapture studies, Journal of the American
Statistical Association 94, 855–9.

Kagan, A. M., Linnik, Y. V. and Rao, C. R. (1973). Characterization Problems in Math-
ematical Statistics (New York, John Wiley & Sons).

Kenett, R. S. (1983). On an exploratory analysis of contingency tables, The Statistician
32, 395–403.

Lauritzen, S. L. (1996). Graphical Models (New York, Oxford University Press).
Luo, D., Wood, G. and Jones, G. (2004). Visualising contingency table data, Australian

Mathematical Society Gazette 31, 258–62.
Nelsen, R. B. (2006). An Introduction to Copulas 2nd edn (New York, Springer-Verlag).
Nelsen, R. B. (1995). Copulas, characterization, correlation, and counterexamples, Math-

ematics Magazine 68, 193–8.
Pearson, E. S. (1956). Some aspects of the geometry of statistics, Journal of the Royal

Statistical Society. Series A 119, 125–46.
Pistone, G., Riccomagno, E. and Wynn, H. P. (2001). Algebraic Statistics (Boca Raton,

Chapman & Hall/CRC).
Ramachandran, B. and Lau, K. S. (1991). Functional Equations in Probability Theory

(New York, Academic Press).
Shapiro, S. H. (1982). Collapsing contingency tables – A geometric approach, American

Statistician 36, 43–6.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables, Journal of

the Royal Statistical Society. Series B 13, 238–41.
Slavkovic, A. B. (2004). Statistical disclosure limitation beyond the margins: characteriza-

tion of joint distributions for contingency tables. PhD thesis, Department of Statistics,
Carnegie Mellon University.

Slavkovic, A. B. and Sullivant, S. (2004). The space of compatible full conditionals is a
unimodular toric variety, Journal of Symbolic Computing 46, 196–209.

Yule, G. U. (1903). Notes on the theory of association of attributes in statistics, Biometrika
2, 121–34.




