Logistic Regression Analyses in the Water Level Study

A. Introduction.

166 students participated in the 'Water level Study'. 70 passed and 96 failed to correctly draw the water level in the glass. There were two main research questions:

- 1. Why was the passing rate so low? What factors affect passing?
- 2. There was a major difference in the proportion of females and males who passed? Can some of the variables in the study explain this?

B. Frequency Tables:

. Table of y by sex

```
Frequency,
      Percent ,
      Row Pct,
      Col Pct , female , male , Total
      fffffffffffffffffffffffffffffff
       75, 21, 96 29.91% of females passed Fail , 45.18 , 12.65 , 57.83 (32/107)
         , 78.13 , 21.88 ,
      , 45.71 , 54.29 ,
          , 29.91 , 64.41
      Statistics for Table of y by sex
              DF Value Prob
   Chi-Square 1 18.5617 <.0001
Likelihood Ratio Chi-Square 1 18.6578 <.0001
          Table of y by gravity
Frequency,
                     Gravity Score
Percent ,
Row Pct,
Fail , 10 , 23 , 18 , 18 , 23 , 4 , 96 , 6.02 , 13.86 , 10.84 , 10.84 , 13.86 , 2.41 , 57.83
   , 10.42 , 23.96 , 18.75 , 18.75 , 23.96 , 4.17 ,
Statistics for Table of y by gravity
                DF Value Prob
   Statistic
   Chi-Square 5 43.1342 <.0001
Likelihood Ratio Chi-Square 5 50.7636 <.0001
```

Page 2

C. Logistic Regression of Pass/Fail in Water Level Study on Sex

 $\beta_0 + \beta_1$, for females

Model: $\ln \{\pi(sex)/[1-\pi(sex)] = \beta_0 + \beta_1 * (sex) =$

β_0 , for males

```
options ls=72;
                                      Note 1: Females are coded '1'
data sex;
                                                 Males are coded '0'
input sex r n @@;
                                        Note 2: Frequency counts are used
cards;
1 32 107 0 38 59
Proc Logistic ; Model r/n=sex ;
output out=pred p=phat lower=lcl upper=ucl;
proc print;
run;
Output:
              The LOGISTIC Procedure
            Model Information
                      WORK.SEX
     Response Variable (Events) r
     Response Variable (Trials) n
     Number of Observations
                     binary logit
     Model
     Optimization Technique
                            Éisher's scoring
            Response Profile
        Ordered Binary Total
Value Outcome Frequency
          1 Event
2 Nonevent
                         70
           Model Fit Statistics
                   Intercept
             Intercept
                        and
       Criterion Only
                         Covariates
             228.036
       AIC
                         211.378
                       217.602
               231.148
       -2 Log L 226.036 207.378
                                                                                           Page 3
                Testing Global Null Hypothesis: BETA=o
              Chi-Square DF Pr > ChiSq
   Test
               io 18.6578 1 <.0001
18.5617 1 <.0001
17.6086 1 <.0001
   Likelihood Ratio
   Wald
```

Test H_0 : No sex effect or H_0 : $\beta_1 = 0$ vs. H_a : $\beta_1 \neq 0$. $G^2 = 18.6578 = LRT$

The LOGISTIC Procedure

Reject H_0 : No sex effect and conclude there is a statistically significant difference between females and males in proportion passing the task.

```
Analysis of Maximum Likelihood Estimates

Parameter DF Standard Wald Estimate Error Chi-Square Pr > ChiSq

Intercept 1 0.5931 0.2719 4.7572 0.0292  
sex 1 -1.4446 0.3443 17.6086 <.0001

Fitted Model: fitted logit(females) = 0.5931 - 1.4446 = -0.8515 for females fitted logit(males) = 0.5931 for males
```

```
Odds Ratio Estimates
```

```
Point 95% Wald
Effect Estimate Confidence Limits
sex 0.236 0.120 0.463
```

Odds ratio (females vs. males) = $s^{-1.4446} = 0.236$

```
Obs sex r n phat lcl ucl

1 1 32 107 0.29911 0.22005 0.39229
2 0 38 59 0.64407 0.51503 0.75510
```

Odds ratio (males vs females):

	Pass	Fail
Males	38	21
Females	32	75

Odds Ratio = $(38)(75)/(21)(32 = 4.24 = s^{1.4446}$

D. Logistic Regression of Pass/Fail in Water Level Study on x = 'Gravity'

```
Model: \ln \pi(x) / [1-\pi(x)].
```

Page 4

```
SAS Program:
options ls=72;
data gravity;
input gravity r n @@;
cards;
0 0 10 1 2 25 2 10 28 3 13 31 4 20 43 5 25 29
Proc Logistic ; Model r/n=gravity ;
output out=pred p=phat lower=lcl upper=ucl;
proc print;
run;
           The LOGISTIC Procedure
            Model Information
                       WORK.GRAVITY
     Data Set
     Response Variable (Events) r
     Response Variable (Trials) n
     Number of Observations
                     binary logit
nique Fisher's scoring
     Model
     Optimization Technique
            Response Profile
        Ordered Binary Total
Value Outcome Frequency
1 Event 70
2 Nonevent 96
           Model Fit Statistics
                   Intercept
             Intercept and
       Criterion Only Covariates
              228.036 187.859
231.148 194.083
```

-2 Log L 226.036 183.859

Scatterplot of r/n, phat vs gravity

gravity

Variable
• r/n
• phat

0.9

0.8 0.7 0.6 0.5 0.4

0.2

0.1

```
Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 42.1765 1 <.0001

Score 37.8303 1 <.0001

Wald 31.1219 1 <.0001
```

Test H₀: No gravity effect or H₀: $\beta_1 = 0$ vs. H_a: $\beta_1 \neq 0$. $G^2 = 42.1765 = LRT$

Reject H_0 : No gravity effect and conclude there is a statistically significant difference between gravity score and proportion passing the task.

```
The LOGISTIC Procedure Page 5

Analysis of Maximum Likelihood Estimates

Parameter DF Standard Wald Error Chi-Square Pr > ChiSq

Intercept 1 -2.8155 0.5048 31.1055 <.0001

Fitted Model: Estimated logit [\pi (\mathbf{x})] = -2.8156+0.7998\mathbf{x}

Odds Ratio Estimates

Effect Point 95% Wald Confidence Limits

gravity 2.225 1.680 2.947
```

Odds of passing the water level task increase by 2.225 for each additional right answer on gravity items.

```
gravity r n r/n phat lcl ucl score (pass) (fail)
0 0 10 .0000 0.05649 0.02178 0.13871
1 2 25 .0800 0.11756 0.06012 0.21719
2 10 28 .3571 0.22864 0.15170 0.32945
3 13 31 .4194 0.39742 0.31490 0.48622
4 20 43 .4651 0.59473 0.49485 0.68733
5 25 29 .8621 0.76554 0.64295 0.85550
```

proc print;

A graph of observed and fitted proportions is Given above, right. How does the 'fit' look?

E. Logistic regression of Pass/Fail on sex and gravity:


```
Proc Logistic; Model Y=sex|gravity;
run;
```

Note: 'descending' not specified

Page 6

E1. Logistic Regression of Pass/Fail on Sex and Gravity Model: $logit[\pi(sex, gravity)] = \beta_0 + \beta_1*(sex) + \beta_2*gravity$

$$(\beta_0 + \beta_1) + \beta_2 * gravity, for females$$

$$= (\beta_0 + 2\beta_1) + \beta_2 * gravity, for males$$

The LOGISTIC Procedure Model Information

Data Set WORK.WATER
Response Variable y
Number of Response Levels 2
Number of Observations 166
Model binary logit
Optimization Technique Fisher's scoring

Probability modeled is y=1.

Model Fit Statistics
Intercept
Intercept and
Criterion Only Covariates

AIC 228.036 181.059

AlC 228.036 181.059 5C 231.148 190.395 -2 Log L 226.036 175.059

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq Likelihood Ratio 50.9766 2 <.0001 Score 45.0940 2 <.0001 Wald 35.2414 2 <.0001

Test H_0 : Sex and gravity together do not affect passing the water level task or H_0 : $\beta_1 = \beta_2 = 0$ vs. H_a : at least one of the parameters is not 0. $G^2 = 50.9766 = LRT$

Conclude the logistic regression of pass/fail on sex and gravity is statistically significant.

Analysis of Maximum Likelihood Estimates

 Standard
 Wald

 Parameter
 DF
 Estimate
 Error
 Chi-Square
 Pr > ChiSq

 Intercept
 1
 -4.1676
 0.7228
 33.2425
 <.0001</td>

 sex
 1
 1.1220
 0.3824
 8.6117
 0.0033

 gravity
 1
 0.7404
 0.1466
 25.4979
 <.0001</td>

Estimated logit(sex,gravity) = -4.1676 + 1.1220sex + 0.7404gravity. Note that sex is coded as 1 for females and 2 for males.

Page 7

Test the hypothesis that there is no gravity effect, adjusted for 'sex'"

Calculate the change in G^2 for the models with both variables included and with only sex.

 G^2 (sex, gravity) - G^2 (sex) = 50.9766 - 42.1765 = 8.801, or calculate the change in - 2log likelihood: -2ln (sex) - [-2ln(sex, gravity) = 183.859 - 175.059 = 8.800. compare this value with the Wald chi-square 8.6117.

Test the hypothesis that there is no sex effect, adjusted for gravity score:

Calculate the change in G^2 for the models with both variables included and with only gravity.

 G^2 (sex, gravity) - G^2 (sex) = 50.9766 - 18.6568 = 32.319, or calculate the change in - 2log likelihood: -2ln (gravity) - [-2ln(sex, gravity) = 207.478 - 175.059. Compare this value with the Wald chi-square 25.4979.

Odds Ratio Estimates

```
Point 95% Wald Confidence Limits

sex 3.071 1.452 6.498
gravity 2.097 1.573 2.795
```

Predicted Values and Confidence Limits for Population Proportions:

Edited Fitted Values are given below; a plot of phat vs. gravity for females and for males is given in the graph.

Row 1 2 3 4 5 6 7	sex 1 1 1 1 1 2	gravity 0 1 2 3 4 5	phat 0.04541 0.09069 0.17295 0.30481 0.47898 0.65841 0.23448	1cl 0.01658 0.04332 0.10478 0.21613 0.35601 0.49314 0.11133	ucl 0.11831 0.18012 0.27199 0.41080 0.60455 0.79246 0.42822
6	1	5	0.65841	0.49314	0.79246
7 8 9	2 2 2	1 2 3	0.23448 0.39107 0.57384	0.11133 0.24091 0.42507	0.42822 0.56514 0.71034
10 11	2	4 5	0.73844	0.60244	0.84026

Page 8

E2. Logistic Regression of Pass/Fail on Sex, Gravity and Sex*Gravity (Interaction Model)

Model: logit[$\pi(sex, gravity)$] = $\beta_0 + \beta_1*(sex) + \beta_2*gravity + \beta_3*(sex*gravity)$

$$\left(\beta_0+\beta_1\right)+\left(\beta_2+\beta_3\right)gravity,$$
 for females

=

$(\beta_0 + 2\beta_1) + (\beta_2 + 2\beta_3)$ gravity, for males

The LOGISTIC Procedure

Model Information

WORK.PRED Data Set Response Variable y Number of Response Levels 2 Response Variable Number of Observations 166
Model binary logit
Optimization Technique Fisher's scoring

Response Profile

Ordered Total y Frequency 0 96 1 70 Value 1

Probability modeled is y=o.Model Fit Statistics

Intercept Intercept and Criterion Only Covariates

AIC 228.036 182.944 SC 231.148 195.392 -2 Log L 226.036 174.944

Testing Global Null Hypothesis: BETA=o Chi-Square DF Pr > ChiSq

Likelihood Ratio 51.0922 3 <.0001 Score 45.1521 3 <.0001 Wald 34.9621 3 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq 0.0030

 Intercept
 1
 4.6340
 1.5633
 8.7873
 0.0030

 sex
 1
 -1.4606
 1.0646
 1.8822
 0.1701

 gravity
 1
 -0.8823
 0.4452
 3.9281
 0.0475

 sex*gravity
 1
 0.1026
 0.3009
 0.1162
 0.7332