Model Selection: Backward & Stepwise Procedures—Water Level Study

A. Introduction.

Observations on nine explanatory (independent) variables were obtained in the 'water Level Study': sex gravity totphys bryant vander triangle trailer tree comphys, and two new variables were created from these: (i) moving and (ii) total. The dependent variable was y: (pass or fail the water level task). Two goals of the study were:

1 Which subset of the variables are statistically significantly related to passing/failing the water level task?

2. Can the difference between females and males on the water level task be explained by the independent variables?

In the following we look at these two issues. We begin by using two subset selection procedures in SAS Proc Logistic for choosing variables related to the response:

- 1. Backward elimination
- 2. Stepwise selection

B. SAS Program:

```
options ls=72;
data water;
input obs y sex gravity totphys bryant vander triangle trailer tree
comphys moving total;
cards;
    1
          0
               1
                     4
                           5
                                3
                                      10
                                             0
                                                   6
                                                        1
                                                              1
                                                                    1
                                                                         25
    2
          1
               2
                     5
                           9
                                6
                                      12
                                             0
                                                   6
                                                        4
                                                              4
                                                                    1
                                                                         37
  . . .
          .
                .
                     .
                                 .
                                      . .
                                                                          . .
                           .
                                                         .
                                                              .
  . . .
                                      . .
 166
          0
               1
                     4
                           7
                                5
                                      12
                                             2
                                                   6
                                                        3
                                                              3
                                                                         35
;
Proc Logistic; Model Y=sex gravity totphys bryant vander triangle
trailer tree comphys moving/backward;
Proc Logistic; Model Y=sex gravity totphys bryant vander triangle
trailer tree comphys moving/stepwise;
run;
```

C. Model Selection: Backward Elimination

The procedure goes in steps;

Step 0. Fit the model with all 10 variables included. The value of $-2\ln L$ (-2 ln likelihood) = 123.105. The LRT value for testing all parameters are simultaneously 0 is LRT = 236.036-123.104 = 102.932.

Step 1. In Step 0, identify the variable with the smallest G^2 for testing its' parameter is 0, adjusted for all other variables in the model—this is (always?) the value with smallest Wald Chi-square or smallest p-value. In this case, the variable is 'triangle'. Calculate the

change in deviance with the value in and out of the model: $G^2 = 102.932-102.897 = 0.035$.

The criterion for significance is $G^2 > 3.84 = \chi^2(1, .05)$. We conclude that 'triangle' is not a significant variable, adjusted for the other variables in the model.

Step 2. Omit the variable identified as not being 'significant' in Step 1. Re-run the logistic regression model with 'triangle' deleted. Identify the variable with the smallest G^2 for testing its' parameter is 0, adjusted for all other variables in the model, as in Step 1. In this case, the variable is 'totphys'. Calculate the change in deviance with the value in and out of the model: $G^2 = 102.897-101.660 = 1.237$. The criterion for significance is $G^2 > 3.84 = \chi^2(1, .05) = 3.84$. We conclude that

'totphys' is not a significant variable, adjusted for the other variables in the model

Continue until no variable, adjusted for others in the model, meets the criterion for deletion.

SAS OUTPUT: Backward Elimination:

The LOGISTIC Procedure

Model Information

Data SetWORK.WATERResponse VariableyNumber of Response Levels2Number of Observations166Modelbinary logitOptimization TechniqueFisher's scoring

Response Profile

Ordered Value	у	Total Frequency
1	0	96
2	1	70

Probability modeled is y= o.

Stepwise Selection Procedure

Step o. The following effects were entered:

Intercept sex gravity totphys bryant vander triangle trailer tree comphys moving

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept Intercept and Criterion Only Covariates

AIC	228.036	145.104
SC	231.148	179.336
-2 Log L	226.036	123.104

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Rati	0 102.93 [,]	19	10	<.0001
Score	75.9882	10	<.	0001
Wald	39.8693	10	<	.0001

Step 1. Effect triangle is removed:

Model Fit Statistics

	Intercept		
Ir	ntercept	and	
Criterion	Only	Covariates	

AIC	228.036	143.139
SC	231.148	174.259
-2 Log L	226.036	123.139

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Rati	0 102.89	70	9	<.0001
Score	75.3948	9	<.0	0001
Wald	39.8243	9	<.0	0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.0345 1 0.8527

Step 2. Effect totphys is removed:

Model Fit Statistics

	Intercept		
Ir	itercept	and	
Criterion	Only	Covariates	
AIC	228 224		

AIC	228.030	142.370
SC	231.148	170.384
-2 Log L	226.036	124.376

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio	0 101.659	8	8	<.0001
Score	74.7438	8	<.	0001
Wald	39.6571	8	<.0	0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

0.9347 2 0.6267

Step 3. Effect comphys is removed:

Model Fit Statistics

	Intercept			
lr	itercept	and		
Criterion	Only	Covariates		
AIC SC -2 Log L	228.036 231.148 226.036	141.542 166.438 125.542		

Stat 504 Spring 2006

 Test
 Chi-Square
 DF
 Pr > ChiSq

 Likelihood Ratio
 100.4940
 7
 <.0001</td>

 Score
 73.5038
 7
 <.0001</td>

 Wald
 37.9008
 7
 <.0001</td>

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

2.0543 3 0.5612

Step 4. Effect sex is removed:

Model Fit Statistics

	Intercept		
Ir	itercept	and	
Criterion	Only	Covariates	
AIC	228.036	142.385	

SC	231.148	104.109
-2 Log L	226.036	128.385

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Rat	io 97.65	04	6	<.0001
Score	70.8081	6	<.	0001
Wald	37.6798	6	<.	0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

4.8313 4 0.3050

NOTE: No (additional) effects met the 0.05 significance level for entry into the model.

Summary of Stepwise Selection

	Effect	Numb	er	Wald	Pr > ChiSq
Step	Removed	DF	In	Chi-Squ	iare .

1	triangle	1	9	.0345	0.8527
2	totphys	1	8	0.8349	0.3609
3	comphys	1	7	1.1476	0.2840
4	sex 1	6		2.8044	0.0940

Analysis of Maximum Likelihood Estimates

Stand Parameter DF Estim		ald or Chi-Squ	iare Pr > ChiSq
Intercept 1 7.8773 gravity 1 -0.5583 bryant 1 -0.3691 vander 1 -0.2044 trailer 1 -0.4932 moving 1 2.4148	2.2166	12.6295	0.0004
	0.1783	9.8099	0.0017
	0.1737	4.5149	0.0336
	0.0712	8.2388	0.0041
	0.2961	5.7890	0.0161
	0.1642	9.0239	0.0027
	0.9041	7.1340	0.0076

Odds Ratio Estimates

Effect	Point	95% Wa	ld
	Estimate	Confic	lence Limits
gravity	0.572	0.403	0.811
bryant	0.691	0.492	0.972
vander	0.815	0.709	0.937
trailer	0.490	0.274	0.876
tree	0.611	0.443	0.842
moving	11.187	1.902	65.808

C2. Model Selection: Stepwise Selection.

Step 0. Fit the intercept model (this step is really not needed). $-2\ln L = 226.036$

Step 1. Fit all models (10 in all) with each variable in the model. Identify that model which has the highest -2lnL. In this case, the model with 'totphys' in it has -2lnL = 178.992—all other models with one variable in them have -2lnL < 178.992. The test of significance of the variable is given by $G^2 = 226.036-178.992 = 47.044$. We reject the hypothesis that the parameter associated with 'totphys' is 0 if $G^2 > 3.84 = \chi^2(1, .05)$. We conclude that 'totphys' is a statistically significant variable (predictor)

Step 2. Run all 2 variable models with 'totphys' and one other predictor. Identify that variable which, together with 'totphys', has the highest value of $-2\ln L$ (or equivalently, the highest value of G^2 for testing the global hypothesis that the two predictors are not jointly significant. In this example, the variable is 'vander'. The value of $-2\ln L$ is 159.484. Then test for significance of the addition of 'vander' to the model containing 'totphys'. The change in $-2\ln L$, or G^2 , is given by $-2\ln L$ (totphys) – [$-2\ln L$ (totphys, vander)] = 178.992-159.484 = 19.508.

Step 3. Proceed as in steps 1 and 2, to identify the third variable, which together with totphys and vander, yields the highest -2lnL or the biggest change in G^2 . This variable is 'tree', with -2lnL = 148.637. The change in deviance is 159.484-148.637 = 10.847. The change is statistically significant.

Now check to see if one of the three variables totphys, vander, or tree, can be deleted from the model without a significant decrease in deviance. This variable could only be 'totphys' (for logical reasons). It turns out that it cannot be deleted.

Continue to add variables and checking to see if any can be deleted, until none can be added. Stop.

SAS OUTPUT: Stepwise Selection Procedure

Step o. Intercept entered:

Model Convergence Status Convergence criterion (GCONV=1E-8) satisfied.

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

75.9882 10 <.0001

Step 1. Effect totphys entered: Model Fit Statistics Intercept Intercept and Criterion Only Covariates

> AIC 228.036 182.993 SC 231.148 189.217

-2 Log L 226.036 178.993

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 47.0426 1 <.0001 Score 41.5656 1 <.0001 Wald 32.9603 1 <.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

44.3755 9 <.0001

Step 2. Effect vander entered:

Model Fit Statistics

Intercept Intercept and Criterion Only Covariates

AIC	228.036	165.484
SC	231.148	174.820
-2 Log L	226.036	159.484

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Rati	0 66.55	13	2	<.0001
Score	57.2050	2	<	.0001
Wald	41.6365	2	<	.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

28.3054 8 0.0004

Step 3. Effect tree entered:

Model Fit Statistics

Intercept						
Ir	itercept	and				
Criterion	Only	Covariates				
AIC	228.036	156.637				
SC	231.148	169.085				
-2 Log L	226.036	148.637				

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood I	Ratio	77.39	83	3	<.0001
Score	64	.0331	3	<.	0001
Wald	42	.4435	3	< .	.0001

Residual Chi-Square Test

Chi-Square	DF	Pr > ChiSq
20.8917	7	0.0039

Step 4. Effect trailer entered:

Model Fit Statistics

Page 7

Intercept Intercept and

Criterion	Only	Covariates
AIC	228.036	150.284
SC	231.148	165.844
-2 Log L	226.036	140.284

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Rat	io 85.751	8	4	<.0001
Score	66.7439	4		<.0001
Wald	40.2427	4	<	<.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

15.3522 6 0.0177

Step 5. Effect moving entered:

Model Fit Statistics

	Intercept		
lr	itercept	and	
Criterion	Only	Covariates	

AIC	228.036	143.792
SC	231.148	162.463
-2 Log L	226.036	131.792

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 94.2442 5 <.0001 Score 69.0294 5 <.0001 Wald 39.2090 5 <.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

8.0348 5 0.1543

Step 6. Effect bryant entered:

Model Fit Statistics

Intercept Intercept and Criterion Only Covariates

AIC	228.036	141.725
SC	231.148	163.509
-2 Log L	226.036	127.725

Testing Global Null Hypothesis: BETA=o

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 98.3107 6 <.0001 Score 71.9151 6 <.0001 Wald 40.1958 6 <.0001

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq

4.0274 4 0.4023

NOTE: No (additional) effects met the 0.05 significance level for entry

into the model.

Summary of Stepwise Selection Effect Number Score Step Entered Removed DF In Chi-Square Pr > ChiSq

1 totphys 2 vander 3 tree 4 trailer 5 moving	1 1 1 1		41.5656 19.1098 0.6764 6.6594	<.0001. <.0001. 0.0011. 0.0099.	
5 moving	1	5	7.5976	0.0058 .	
6 bryant	1	6	3.9691	0.0463 .	

Analysis of Maximum Likelihood Estimates

Wald Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept 1 7.7840 2.1401 13.2297 0.0003 totphys 1 -0.3914 0.1209 bryant 1 -0.3412 0.1739 10.4818 0.0012 3.8479 0.0498 vander 1 -0.2059 0.0719 8.2126 0.0042 5.7122 7.6388 trailer 1 -0.6802 0.2846 tree 1 -0.4534 0.1640 0.0168 0.0057 moving 1 2.3768 0.8904 7.1250 0.0076

Odds Ratio Estimates

Effect	Point	95% Wa	ld
	Estimate	Confid	Ience Limits
totphys	0.676	0.533	0.857
bryant	0.711	0.506	1.000
vander	0.814	0.707	0.937
trailer	0.507	0.290	0.885
tree	0.635	0.461	0.876
moving	10.771	1.881	61.684

D. Conclusions.

1. Variables Selected and Estimates

Backward elimination	Stepwise Selection
Point 95% Wald Effect Estimate Confidence Limits	Point 95% Wald Effect Estimate Confidence Limits
bryant 0.691 0.492 0.972 vander 0.815 0.709 0.937	phys 0.676 0.533 0.857 yant 0.711 0.506 1.000 ander 0.814 0.707 0.937 ailer 0.507 0.290 0.885 e 0.635 0.461 0.876 noving 10.771 1.881 61.684

The two procedures each selected 6 variables with 5 in common; backward elimination chose 'gravity' while stepwise chose 'totphysics'. The odd ratio and confidence interval estimates are quite close for all variables.

2. Neither model includes 'sex'. We conclude that adjusted for these 6 independent variables 'sex' does not affect passing/failing.