#### R code for Crab example ####Poisson Regression Model for Count Data crab=read.table("crab.txt") colnames(crab)=c("Obs","C","S","W","Wt","Sa") #### to remove the column labeled "Obs" crab=crab[,-1] #### the following code corresponds to crab.SAS-crab1.SAS #### Fitting the intercept only model #### This model implies the expected number of satellites #### per each crab is the same #### in this case: E(Sa)=2.919=exp(1.0713) model=glm(crab$Sa~1, family=poisson(link=log)) summary(model) model$fitted #### Poisson Regression of Sa on W model=glm(crab$Sa~1+crab$W,family=poisson(link=log)) summary(model) anova(model) #### to get the predicted count for each observation: #### e.g. for the first observation E(y1)=3.810 print=data.frame(crab,pred=model$fitted) print #### note the linear predictor values #### e.g., for the first observation, exp(1.3378)=3.810 model$linear.predictors exp(model$linear.predictors) rstandard(model) #### Interpretation of the slope which is statistically significant here #### e.g., exp(0.1640)=1.18 #### as the width increases by one unit, the number of satilies will #### increase (positive sign of the coef), #### it will be multiplied by 1.18 #### e.g., for W=26 and W=25, first for all values #### then for specific rows model$fitted[crab$W==26]/model$fitted[crab$W==25] model$fitted[2]/model$fitted[6] #### Based on the residual deviance the model does NOT fit well #### e.g., 567.88/171 = 3.3209 1-pchisq(model$deviance, model$df.residual) #### creating a scatter plot of Sa vs. W plot(crab$W,crab$Sa) identify(crab$W, crab$Sa) #### click on the plot to identify individual values #### identified on the screen and the plot, \#48,101,165 #### Diagnostics measures (like in logistic regression) #### But these work for ungrouped data too, #### as long as there is a variable with counts #### You can do many more but here are a few indicating a lack of fit influence(model) plot(influence(model)$pear.res) plot(model$linear.predictors, residuals(model, type="pearson")) #### To predict a new value newdt=data.frame(W=26.3) predict.glm(model, type="response", newdata=newdt) #### Let's assume for now that we do not have other covariates #### and we will adjust for overdispersion #### first look at the sample mean and variances ## e.g., tapply(crab$Sa, crab$W,function(x)c(mean=mean(x),variance=var(x))) #### To estimate dispersion parameter #### Do it on your own by X2/df & use summary.glm() (see log. reg notes) #### Use DISMOD package (see log.reg notes) #### Use quasipoisson family model.disp=glm(crab$Sa~crab$W, family=quasipoisson(link=log), data=crab) summary.glm(model.disp) summary.glm(model.disp)$dispersion #### Fit a negative binomial model #### the dispersion parameter is THETA #### Here are two different ways, both must use library(MASS) #### In the first one, we fix theta to be 1.0 #### In the second one we let glm.nb() to estimate it library(MASS) nb.fit=glm(Sa~W, data=crab, family=negative.binomial(theta=1, link="identity"), start=model$coef) summary(nb.fit) nb.fit1=glm.nb(Sa~W, data=crab, init.theta=1, link=identity, start=model$coef) summary(nb.fit1) #### Adding a categorical predictor #### This corresponds with crab2.SAS #### make sure C is a factor is.factor(crab$C) crab$C=as.factor(crab$C) model=glm(Sa~W+C,family=poisson(link=log), data=crab) summary(model) anova(model) print=data.frame(crab,pred=model$fitted) print #### to get the same order as you do in SAS contrasts(crab$C)=contr.SAS(levels(crab$C)) model=glm(Sa~W+C,family=poisson(link=log),data=crab) summary(model) anova(model) #### to get back to the default level contrasts(crab$C)=contr.treatment(levels(crab$C),base=1) #### Or you can explicilty code the levels to correspond to SAS #### Notice that change from C1 to C4 in a number of SA is significant #### exp(0.447)=1.54, pvalue=0.0324 #### but if you adjust for overdispersion it's not significant Sa=crab$Sa W=crab$W C1=1*(crab$C==1) C2=1*(crab$C==2) C3=1*(crab$C==3) model=glm(Sa~W+C1+C2+C3,family=poisson(link=log)) summary(model) anova(model) print=data.frame(crab,pred=model$fitted) print plot(crab$W, model$fitted) model.disp=glm(Sa~W+C1+C2+C3, family=quasipoisson(link=log)) summary.glm(model.disp) summary.glm(model.disp)$dispersion anova(model.disp) #### Treat Color as a numeric predictor #### This corresponds to crab3.SAS Sa=crab$Sa W=crab$W C=as.numeric(crab$C) model=glm(Sa~W+C,family=poisson(link=log)) summary(model) anova(model) print=data.frame(crab,pred=model$fitted) print newdt=data.frame(W=0,C=1) predict.glm(model, type="response", newdata=newdt) #### This corresponds to to crab5.SAS width=c(22.69,23.84,24.77, 25.84,26.79,27.74,28.67,30.41) cases=c(14,14,28,39,22,24,18,14) SaTotal=c(14,20,67,105,63,93,71,72) lcases=log(cases) CrabGrp=data.frame(width,cases,SaTotal,lcases) model=glm(SaTotal~width,offset=lcases,family=poisson(link=log)) residuals(model) summary(model) anova(model) print=data.frame(CrabGrp,pred=model$fitted) print #### create a plot of the results plot(SaTotal, pch="o", col="blue", main="Plot of Observed and Predicted Sa vs. groups", xlab="Width groups", ylab="Number of Satellites") points(model$fitted, pch="p", col="red") legend(6,30,c("obs","pred"), pch=c("o","p"), col=c("blue","red")) model=glm(SaTotal~width,offset=lcases,family=poisson(link=identity)) residuals(model) #### if you wanted to aggregate from the original data #### create W as a factor variable with 8 levels W.fac=cut(crab$W, breaks=c(0,seq(23.25, 29.25),Inf)) numcases=table(W.fac) #### now compute sample means for Width variable by the cuts #### and total number of Sa cases width=aggregate(crab$W, by=list(W=W.fac),mean)$x width SaMean=aggregate(crab$Sa, by=list(W=W.fac),mean)$x SaMean plot(width,SaMean) SaTotal=aggregate(crab$Sa, by=list(W=W.fac),sum)$x SaTotal lcases=log(numcases) lcases