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Abstract

The last fifteen years have brought many changes to
the practice of categorical data analysis. This pa-
per reviews some of the major changes and shifts
of emphasis and discusses several examples using
SAS software procedures. Topics include the use
of exact methods, generalized estimating equations,
conditional logistic regression, and current uses of
weighted least squares modeling. Applications pro-
vide illustration for many topics. This paper describes
software currently available in the SAS System and
indicates the areas in which new software should be
available in the next few years. The references in-
clude some pertinent methodology and review pa-
pers.

Introduction

Fifteen years ago, the SUGI paper describing the cat-
egorical data analysis enhancements in the upcom-
ing Version 5 release described the CATMOD proce-
dure (a replacement for the FUNCAT procedure) and
the Mantel-Haenszel nonparametric statistics being
included in the FREQ procedure. The paper then con-
tinued with a discussion on weighted least squares
methods for statistical modeling and Mantel-Haenszel
methods for testing association in a contingency table
or sets of contingency tables.

Since that time, further developments in categori-
cal data analysis and new computing strategies have
changed the typical strategies employed by the data
analyst facing categorical data. Once safely armed
with her CATMOD documentation and PROC FREQ,
then patiently learning the difference between the
supplemental procedure PROC LOGIST contributed
by Frank Harrell and PROC LOGISTIC, the analyst
now contends with a number of different procedures
such as LOGISTIC, GENMOD, and PHREG.

Mantel-Haenszel strategies are now employed in the
analysis of repeated measurements and crossover
studies. GEE methods provide a convenient way of
modeling repeated measurements data that can in-
clude continuous covariates, missing data, and time-
dependent covariates. Highly stratified data can be

handled with conditional logistic methods, which also
provide a way of analyzing crossover data. When
asymptotic assumptions are not appropriate due to
sparse data or small sample sizes, exact methods
can provide a way to produce appropriate p-values
for tests, valid confidence limits for odds ratios, and
parameter estimates and standard errors in logistic
regression. Weighted least squares, a very important
strategy in the 70s and 80s for general statistical mod-
eling, still provides a useful way of modeling functions
of interest such as rank measures of association and
incidence densities.

What follows are descriptions of these newer strate-
gies and illustrations of their application.

Exact p-Values

Exact p-values provide an alternative strategy to the
usual asymptotic tests when data are sparse, skewed,
or unbalanced so that the assumptions required for
standard asymptotic tests are violated. Advances
in computer performance and developments in net-
work algorithms over the last decade have made ex-
act p-values accessible for a number of statistical
tests. In Release 6.11, exact p-values were added
for the simple linear rank statistics produced by the
NPAR1WAY procedure. In Release 6.12, exact p-
values are produced for many of the statistics com-
puted by the FREQ procedure. You are now able
to request exact p-values for the following chi-square
statistics: Pearson’s chi-square, likelihood-ratio chi-
square, Mantel-Haenszel chi-square, Fisher’s exact
test and r by c exact test, Jonckheere-Terpstra test,
and McNemar’s test. In addition, you can also obtain
exact p-values for hypothesis tests that the following
statistics are equal to 0: Pearson correlation coeffi-
cient, Spearman correlation coefficient, simple kappa
statistic, and weighted kappa statistic. Exact confi-
dence bounds are also available for the odds ratios
produced for 2 by 2 tables.

In Version 7, a test for the binomial proportion is
available along with an exact p-value, and exact p-
values are available for the Pearson chi-square statis-
tic for two-way tables and the goodness-of-fit statis-
tic for one-way tables. In addition, the Monte Carlo
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method of computing exact p-values is included in
the NPAR1WAY procedure and will be included in the
FREQ procedure in Version 8.

The following example illustrates the use of the new
EXACT statement to produce an exact p-value for the
simple kappa statistic. Researchers studied two scor-
ing systems for evaluating fitness in fifth grade stu-
dents. Forty-three students were classified into one
of four fitness categories. Interest lies in determining
whether there is agreement between the two scoring
systems, which can be assessed by testing whether
the kappa coefficient is equal to 0.

data fitness;
input score1 $ score2 $ count;
datalines;
poor poor 5
average average 4
good good 4
superior superior 3
poor average 3
average poor 1
average good 6
good average 5
good superior 1
superior average 10
superior good 1
;

To request the exact p-value for the kappa statistic,
you specify the keyword KAPPA in the EXACT state-
ment. The AGREE option in the MODEL statement
requests the measures of agreement.

proc freq;
weight count;
tables score1 * score2 / agree;
exact kappa;

run;

The following figure displays the contingency table
form of the data. Note the number of zero cells, which
makes the use of the asymptotic test questionable.

TABLE OF SCORE_1 BY SCORE_2

SCORE_1 SCORE_2

Frequency|
Percent |
Row Pct |
Col Pct |average |good |poor |superior| Total
---------+--------+--------+--------+--------+
average | 4 | 6 | 1 | 0 | 11

| 9.30 | 13.95 | 2.33 | 0.00 | 25.58
| 36.36 | 54.55 | 9.09 | 0.00 |
| 18.18 | 54.55 | 16.67 | 0.00 |

---------+--------+--------+--------+--------+
good | 5 | 4 | 0 | 1 | 10

| 11.63 | 9.30 | 0.00 | 2.33 | 23.26
| 50.00 | 40.00 | 0.00 | 10.00 |
| 22.73 | 36.36 | 0.00 | 25.00 |

---------+--------+--------+--------+--------+
poor | 3 | 0 | 5 | 0 | 8

| 6.98 | 0.00 | 11.63 | 0.00 | 18.60
| 37.50 | 0.00 | 62.50 | 0.00 |
| 13.64 | 0.00 | 83.33 | 0.00 |

---------+--------+--------+--------+--------+
superior | 10 | 1 | 0 | 3 | 14

| 23.26 | 2.33 | 0.00 | 6.98 | 32.56
| 71.43 | 7.14 | 0.00 | 21.43 |
| 45.45 | 9.09 | 0.00 | 75.00 |

---------+--------+--------+--------+--------+
Total 22 11 6 4 43

51.16 25.58 13.95 9.30 100.00

Figure 1. Exact Test for Simple Kappa

The resulting exact p-value for the hypothesis that the
simple kappa statistic is equal to 0 is p=0.055, which
may be considered to have marginal significance at
best. Note the value p=0.038 for the asymptotic test.
Using exact p-values for this analysis leads to a very
different conclusion than what you obtain using the
asymptotic test.

STATISTICS FOR TABLE OF SCORE_1 BY SCORE_2

Test of Symmetry
----------------

Statistic = 11.091 DF = 6 Prob = 0.086

Simple Kappa Coefficient
------------------------

95% Confidence Bounds
Kappa = 0.167 ASE = 0.102 -0.032 0.366

Asymptotic P-Values Exact P-Values
(Right-sided) = 0.019 (Right-sided) = 0.034
(Two-sided) = 0.038 (Two-sided) = 0.055

Weighted Kappa Coefficient
--------------------------

95% Confidence Bounds
Kappa = 0.100 ASE = 0.100 -0.096 0.297

Sample Size = 43

Figure 2. Exact Test for Simple Kappa

Generalized Estimating Equations

Weighted least squares (WLS) modeling of repeated
categorical data was described by Landis et al. (1977)
and provides a large sample asymptotic method that
works nicely for data that have adequate sample size,
a small number of response points, a small number
of categorical explanatory variables measured at the
subject level, and no missing data. The CATMOD pro-
cedure introduced the REPEATED statement to pro-
vide this analysis.

While this method is still useful for data that meet
these conditions, most data that are collected with
clustered or repeated responses do not. Longitudi-
nal data are usually plagued with missing responses,
explanatory variables include continuous variables as
well as categorical, and there is often interest in time-
dependent covariates such as blood pressure in a
clinical trial. In addition, as you start to increase the
number of explanatory variables, you often don’t meet
the asymptotic requirements for the WLS approach.

Generalized Estimating Equations (GEE) provides a
nonlikelihood based approach to modeling repeated
or clustered data that applies to a broader set of data
situations that are frequently encountered. It han-
dles missing data, continuous explantory variables,
and time-dependent explanatory variables. While re-
sponses can be either continuous or categorical, it
is especially useful for data that are binary or dis-
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crete counts. An extension of the generalized lin-
ear model (GLM) first suggested by Nelder and Wed-
derburn (1972), the GEE approach was outlined in
work by Zeger and Liang (1986) and Liang and Zeger
(1986) that describe a quasi-likelihood approach for
modeling correlated responses. Besides using the
linear predictor set-up of the GLM, you model the co-
variance matrix of the responses. The GEE approach
produces population-averaged estimates. With quasi-
likelihood, you can pursue statistical models by mak-
ing assumptions about the link function and the rela-
tionship between the first two moments, but without
specifying the complete distribution of the response.

Say that Yij(j = 1; : : : ; ni; i = 1; : : : ;K) represent the
jth measurement on the ith subject. There are ni mea-
surements on subject i and

PK

i=1 ni total measure-
ments.

The generalized estimating equation for estimating �
is an extension of the GLM estimating equation:

KX
i=1

@�0

@�
Vi

�1(Yi � �i(�)) = 0

where � is the corresponding vector of means � =
[�i1; : : : ; �ini ]

0 andVi is an estimate of the covariance
matrix of Y.

The covariance matrix of Yi is modeled as

Vi = �Ai

1

2Ri(�)Ai

1

2

where Ai is an ni � ni diagonal matrix with v(�ij ) as
the jth diagonal element.

The working correlation matrix Ri(�) is estimated as

rij =
yij � �ijp
v(�ij)

using the current value of the parameter vector � to
compute appropriate functions of the Pearson resid-
ual.

There are many choices for the working correla-
tion matrix. The independent working correlation
matrix includes 1s on the diagonals and 0s on
the off-diagonals. Other choices are the unstruc-
tured, exchangeable (compound symmetry), autore-
gressive(1), and m-dependent.

Finding the GEE solution requires these steps:

� Relate the marginal response �ij=E(Yij ) to x0ij�
with a link function. For example, the logit.

� Specify the variance function.

� Choose a working correlation matrix Ri(�).

� Compute an initial estimate of �, for example
with an ordinary generalized linear model as-
suming independence.

� Compute the working correlation matrix Ri.

� Compute an estimate of the covariance matrix:

Vi = �Ai

1

2 R̂i(�)Ai

1

2

� Update �:

�r+1 = �r�

� KX
i=1

@�i
@�

0

V
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i

@�i
@�

�
�1� KX

i=1

@�i
@�

0

V
�1

i (Y � �i)

�

� Compute residuals and update Vi.

� Iterate until convergence.

The GEE parameter estimates have many important
properties. They are the generalized linear model es-
timating equations when you have one measurement
per cluster. They are the maximum likelihood score
equations for multivariate Gaussian data. And, most
importantly, the GEE parameter estimates are consis-
tent as the number of clusters becomes large, even if
you have misspecified the working correlation matrix,
as long as the mean model is correct.

The model-based estimator of Cov(�̂) is given by

CovM (�̂) = I�10

where

I0 =

KX
i=1

@�

@�

0

V
�1 @�

@�

This is a consistent estimator if the model and working
correlation matrix are correctly specified.

The empirical, or robust, estimator of Cov(�̂) is given
by

M = I�10 I1I
�1

0

where

I1 =

KX
i=1

@�

@�

0

V
�1Cov(Y)V�1 @�

@�
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This is a consistent estimator of Cov(�̂) as the num-
ber of clusters become large, even if the working cor-
relation matrix is not specified correctly.

The GEE approach produces a marginal model. It
models a known function of the marginal expecta-
tion of the dependent variable as a linear function of
explanatory variables. The resulting parameter es-
timates are population-averaged. GEE relies on in-
dependence across subjects to consistently estimate
the variance. Compare this to a mixed model where
you are estimating subject-specific parameter esti-
mates, but you are heavily leveraging the correlation
assumption.

Exercise Study

One of the applications of GEE methods is to
crossover studies. In a crossover study, subjects have
their response measured at different periods under
different conditions. In a classic two period, two treat-
ment crossover study, some subjects get a Treatment
A during Period 1 and Treatment B during Period 2,
while other subjects get the sequence Treatment B
during Period 1 and Treatment A during Period 2.
Usually, there is some sort of washout period so that
whatever effects of the treatment during the first pe-
riod have washed out before the second period be-
gins. Also, the nature of the response is such that
the subject is able to have the indicated response a
few times within a relatively short period of time. In a
crossover study, the subject acts as his own control.

More complicated designs, including sequences that
can draw from more than two possible treatments
(for example, A, B, and Placebo) and additional pe-
riods, can provide a better framework for estimating
the treatment effect. In this example, GEE methods
are used to analyze a three-period crossover study in
which patients with a chronic respiratory condition are
exposed to different levels of air pollution while exer-
cising and measured for respiratory distress on a four
point ordinal scale, ranging from 0 for none to 3 for
severe. A dichotomous baseline distress measure-
ment was taken at the beginning of the study. Six se-
quences were studied: HML, HLM, MHL, MLH, LHM,
and LMH, where ’H’ means High, ’M’ means medium,
and ’L’ means low.

In this analysis, the subject is the cluster and there
may be a maximum of three response corresponding
to the three periods. Missing responses occurred at
each of the three periods. Interest lies in determining
whether there was a pollution effect, baseline effect,
period, and carryover effects.

The following DATA step inputs the exercise data.
There is one observation per subject per period.
The variable Sequence contains the sequence in-

formation, for example, observations with the value
’HML’ received the sequence High in the first period,
Medium in the second period, and Low in the third pe-
riod. The indicator variables High and Medium take
the value ‘1’ is the exposure is High or Medium, re-
spectively, for that period. ID is the subject ID within
sequence group, Period1 and Period2 are indicator
variables for whether the observation is from Period
1 or Period 2, and CarryHigh and CarryMedium
are indicator variables for whether the previous pe-
riod was High exposure or Medium exposure. The
variable Baseline takes the value ‘1’ for respiratory
distress at the beginning of the study.

data Exercise;
input Sequence $ ID $ Period1 Period2 High Medium Baseline
Response CarryHigh CarryMedium @@;
strata=sequence||id;
DichotResponse= (Response >0);

datalines;
HML 1 1 0 1 0 0 3 0 0 HML 1 0 1 0 1 0 1 1 0
HML 1 0 0 0 0 0 0 0 1
HML 2 1 0 1 0 0 3 0 0 HML 2 0 1 0 1 0 2 1 0
HML 2 0 0 0 0 0 0 0 1
HML 3 1 0 1 0 1 3 0 0 HML 3 0 1 0 1 0 2 1 0
HML 3 0 0 0 0 0 . 0 1
HML 4 1 0 1 0 0 2 0 0 HML 4 0 1 0 1 0 0 1 0
HML 4 0 0 0 0 0 2 0 1
...

The following statements produce a listing of the num-
ber of subjects in each of the sequences.

proc freq;
tables Sequence Response;

run;

The FREQ Procedure

Cumulative Cumulative
Sequence Frequency Percent Frequency Percent
-------------------------------------------------------
HLM 72 16.00 72 16.00
HML 78 17.33 150 33.33
LHM 72 16.00 222 49.33
LMH 72 16.00 294 65.33
MHL 60 13.33 354 78.67
MLH 96 21.33 450 100.00

Figure 3. Frequencies of Exercise Sequences

The GEE analysis is performed with the GEE facil-
ity in the GENMOD procedure. This has been made
much more comprehensive in Version 7 with the in-
clusion of Type III tests, the CONTRAST, ESTIMATE,
and LSMEANS statement, and the capability of han-
dling the ordinal response with the proportional odds
model. PROC GENMOD also now provides the alter-
nating logistic regression method for binary data.

The following statements request the analysis. The
crossclassification of the variables Sequence and Id
uniquely identify each cluster (subject), so that effect
is specified with the SUBJECT= option in the RE-
PEATED statement. The model consisting of all the
main effects is specified, and the proportional odds
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model is requested with the DIST=MULTINOMIAL
and LINK=CLOGIT specifications.

proc genmod;
class Id Sequence;
model Response = Period1 Period2 High Medium

Baseline CarryHigh CarryMedium
/ dist=multinomial

link=clogit;
repeated subject= Sequence*Id /type=ind corrw;
contrast ’Carryover Effect’ CarryHigh 1,

CarryMedium 1;
contrast ’Period Effect’ period1 1,

period2 1 ;
run;

In order to assess joint effects for Period and Carry-
over, two sets of two-row contrasts are specified.

Figure 4 tells you that the link function and distribution
have been specified correctly and that there are 406
total period measurements. Missing values for the re-
sponse occurs 44 times.

Model Information

Data Set WORK.EXERCISE
Distribution Multinomial
Link Function Cumulative Logit
Dependent Variable Response
Observations Used 406
Missing Values 44

Figure 4. GLM Information

Figure 5 displays the internal ordering of responses
values, which is from 0 to 3, for no distress to severe
distress.

Response Profile

Ordered Ordered
Level Value Count

1 0 87
2 1 130
3 2 127
4 3 62

Figure 5. Ordered Values

Figure 6 displays the information for the GEE analy-
sis. The data includes 150 clusters, for which 37 have
missing values. Cluster size ranges from 1 (only one
period measured) to 3 (all periods represented).

GEE Model Information

Correlation Structure Independent
Subject Effect ID*Sequence (150 levels)
Number of Clusters 150
Clusters With Missing Values 37
Correlation Matrix Dimension 3
Maximum Cluster Size 3
Minimum Cluster Size 1

Figure 6. GEE Information

Figure 7 contains the parameter estimates. Neither
the Carryover nor Period effects appear to be influen-
tial. The Medium exposure appears to be marginally
influential with a parameter estimate of �0:4693 and
a p-value of 0.0756; the High exposure appears to be
very significant with a parameter estimate of �3:1225
and a p-value of less than 0.0001.

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

95% Confidence
Standard Limits

Parameter Estimate Error Lower Upper Z Pr > |Z|

Intercept1 -0.8959 0.3074 -1.4983 -0.2934 -2.91 0.0036
Intercept2 0.9478 0.3290 0.3030 1.5926 2.88 0.0040
Intercept3 3.2798 0.3524 2.5891 3.9705 9.31 <.0001
Period1 0.2609 0.2973 -0.3219 0.8436 0.88 0.3803
Period2 -0.0287 0.2380 -0.4953 0.4378 -0.12 0.9040
High -3.1225 0.3032 -3.7167 -2.5283 -10.30 <.0001
Medium -0.4693 0.2641 -0.9869 0.0484 -1.78 0.0756
Baseline 0.4932 0.3708 -0.2335 1.2199 1.33 0.1835
CarryHigh 0.3721 0.3041 -0.2240 0.9682 1.22 0.2211
CarryMedium 0.4265 0.2968 -0.1551 1.0081 1.44 0.1507

Figure 7. Parameter Estimates

The contrast results provide the 2 degree of freedom
tests for both the Carryover and Period effects.

CONTRAST Statement Results for GEE Analysis

Chi-
Contrast DF Square Pr > ChiSq Type

Carryover Effect 2 2.55 0.2799 Score
Period Effect 2 1.03 0.5976 Score

Figure 8. Results of Contrasts

With both p-values greater than 0.25, these joint tests
are non-significant. There appears to be neither Car-
ryover nor Period effects for these data. Note that the
default test for the CONTRAST statement used for the
GEE analysis is a score test; you can also request a
Wald statistic. The score statistics are generally more
suitable for smaller sample sizes.

The reduced model was fit with the following MODEL
statement. Baseline was retained as a covariate.

model response = high medium baseline
/ dist=multinomial
link=clogit;

Figure 9 contains the parameter estimates for the final
model.

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

95% Confidence
Standard Limits

Parameter Estimate Error Lower Upper Z Pr > |Z|

Intercept1 -0.5404 0.1740 -0.8814 -0.1994 -3.11 0.0019
Intercept2 1.2933 0.1949 0.9114 1.6752 6.64 <.0001
Intercept3 3.6171 0.2586 3.1102 4.1239 13.99 <.0001
High -3.2523 0.3057 -3.8513 -2.6532 -10.64 <.0001
Medium -0.6204 0.2293 -1.0698 -0.1711 -2.71 0.0068
Baseline 0.5006 0.3381 -0.1620 1.1631 1.48 0.1387
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Figure 9. Reduced Model Results

Note that goodness-of-fit statistics are still being re-
searched for GEE analyses. See work by Barnhart
and Williamson (1998) and Preisser and Quaqish
(1996) for some recent discussions of goodness of
fit and deletion diagnostics. Given adequate sample
size, it may be advantageous to assess model ade-
quacy by including additional terms in the model such
as pairwise and possibly higher interactions and then
performing a joint test on those effects. If the test is
non-significant, it leads credence to the correspond-
ing reduced model under consideration.

Conditional Logistic Regression

Conditional logistic regression has long been used in
epidemiology where a retrospective study matched
subjects, or cases, with an event of interest with sim-
ilar subjects, or controls, who didn’t have the event.
You determine whether the case and control had the
risk factors being investigated, and, by using a condi-
tional likelihood, you can predict the event given the
explanatory variables. You set up the probabilities for
having the exposure given the event and then apply
Bayes’ theorem to determine a relevant conditional
probability.

More recently, conditional logistic regression has also
been applied in the situation of highly stratified data
and crossover studies. When you have highly strati-
fied data, you may have a small number of subjects
pers stratum, and thus you have a small number of
subjects relative to the number of parameters you are
estimating because you will need to estimate stratifi-
cation effects. Sample size requirements for the usual
maximum likelihood approach to unconditional logis-
tic regression may not be met.

You have a similiar situation with crossover studies, in
which subjects are acting as their own controls.

Highly Stratified Data

Stokes et al. (1995) include an example of a clini-
cal trial in which researchers studied the effects of a
new treatment for a skin condition. A pair of patients
participated from each of 79 clinics. One person re-
ceived the treatment and another person received the
placebo. Age, sex, and an initial score for the skin
condition (ranging from 1 to 4 for mild to severe) were
recorded. The response was whether the skin con-
dition improved. Note that because there are only
two observations per clinic, it would not be possible to
estimate properly a clinic effect. Generally speaking,
you would want to have at least five observations per
clinic in order to proceed with that type of estimation.

However, by conditioning away the clinic effects as
nuisance parameters, you can perform a logistic re-
gression that results in far fewer parameters. In
Stokes et al., this analysis is performed by recogniz-
ing that, in the case of pairs within strata, you can cre-
ate a response that is a within-stratum difference and
analyze those differences with the LOGISTIC proce-
dure. However, it’s more straightforward to use the
PHREG procedure to perform this analysis. While
designed for proportional hazards regression analy-
sis, through computational equivalences the proce-
dure can also be used for conditional logistic regres-
sion.

The data have the following form, where each line
consists of two observations. Indicator variables are
created for various interactions and to make treatment
into a numerical variable. (A CLASS statement is on
the list for future PROC PHREG work).

data trial;
input center treat $ sex $ age improve initial @@;
/* compute model terms for each observation */
trt=treat=(’t’);
i_sex=(sex=’m’); i_trt=(treat=’t’);
trtsex=i_sex*i_trt; trtinit=i_trt*initial;
trtage=i_trt*age; isexage=i_sex*age;
isexinit=i_sex*initial;iageinit=age*initial;

cards;
1 t f 27 0 1 1 p f 32 0 2
2 t f 41 1 3 2 p f 47 0 1
3 t m 19 1 4 3 p m 31 0 4
4 t m 55 1 1 4 p m 24 1 3
. . .

The following statements request conditional logistic
regression. The variable center is the stratification
variable. The TIES=DISCRETE option is required.
The first four variables in the MODEL statement are
automatically included in the model, and then the pro-
cedure produces a score statistic for the joint inclu-
sion of the remaining variables. This serves as a
goodness-of-fit check.
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proc phreg data=trial;
strata center;
model improve = trt initial age i_sex

isexage isexinit iageinit
trtsex trtinit trtage / ties=discrete
selection=forward include=4 details;

run;

Figure 10 displays the parameter estimates for this
analysis.

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

trt 1 -0.70244 0.36009 3.8052 0.0511 0.495
initial 1 -1.09148 0.33508 10.6104 0.0011 0.336
age 1 -0.02483 0.02243 1.2252 0.2683 0.975
i_sex 1 -0.53115 0.55451 0.9175 0.3381 0.588

Figure 10. Parameter Estimates for Clinical Trial
Data

Figure 11 and Figure 12 contain information about en-
tering variables.

Analysis of Variables Not in the Model

Score
Variable Chi-Square Pr > ChiSq

isexage 0.6593 0.4168
isexinit 0.1775 0.6736
iageinit 2.9194 0.0875
trtsex 0.2681 0.6046
trtinit 0.0121 0.9125
trtage 0.4336 0.5102

Figure 11. Analysis of Entering Variables

Residual Chi-Square Test

Chi-Square DF Pr > ChiSq
4.7211 6 0.5800

Figure 12. Score Test for Other Variables

First, consider the statistics displayed in Figure 11
and Figure 12. The residual score statistic value of
4.7211 with 6 df (p-value= 0.5800) indicates that the
additional terms are of little consequence. Age and
sex appear not to be influential, and you may choose
to keep them in the model as covariates or further
perform model reduction by fitting the model without
them.

Note that since the alphanumeric ordering of the re-
sponse values is (0,1), the model is based on predict-
ing the probability of no improvement. For dichoto-
mous logistic regression, you can simply switch the
signs of the parameter estimates to obtain the esti-
mates for the model based on the probability of im-
provement. Thus, those with treatment have an odds
e:70244 = 2:019 times higher of improving than those
patients receiving the placebo. This is true even af-
ter initial grade is adjusted for in the model. And, the

odds of improvement are e1:0918 = 2:980 times higher
per unit increase in initial grade. Note that the condi-
tional logistic analysis has also taken into account any
effect of clinic.

Crossover Data

Conditional logistic regression also provides a use-
ful analysis strategy for the crossover design. When
you apply conditional logistic regression in this set-
ting, you are creating a strata for each subject. You
are conditioning out subject to subject variability and
focusing on intrasubject information. Thus, you can
often perform analyses that would not be possible
with population-averaging methods due to small sam-
ple size. Note that the odds ratios resulting from the
conditioning approach apply to subjects individually
instead of to subjects on average. This may be an
important consideration depending on your analysis
objectives. For example, in a study whose objective is
to produce a model that can be used for patient pro-
tocol prediction, the conditional logistic model may be
more appropriate.

The exercise data above are reanalyzed with the con-
ditional logistic model, using the PHREG procedure.
For this analysis, the response is dichotomized into
1, for severe response, and 0, for other responses.
In addition, a new variable Strata has been defined,
which is a unique identifier for each subject based on
a combination of Sequence and Id.

The STRATA statement defines the strata; note that
the specification TIES=DISCRETE is required in or-
der to produce the correct estimates. You use the
TEST statement to specify tests concerning the pa-
rameter estimates: here, joint tests for both the Car-
ryover and Period effects are requested.

proc phreg data=Exercise;
strata Strata;
model dichotresponse = period1 period2 high

medium baseline CarryHigh CarryMedium
/ ties=discrete;

Carryover: test CarryHigh=CarryMedium=0;
Period: test Period1=period2=0;

run;

Results of the parameter estimation are displayed in
Figure 13 and are similar to those obtained in the GEE
analysis. High and Medium exposures are influential,
and it doesn’t appear that there are Carryover or Pe-
riod effects.
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Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Hazard
Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

Period1 1 -0.15440 0.44683 0.1194 0.7297 0.857
Period2 1 -0.26202 0.31225 0.7041 0.4014 0.769
High 1 -1.70458 0.35000 23.7198 <.0001 0.182
Medium 1 -0.68624 0.35899 3.6542 0.0559 0.503
Baseline 1 0.65094 0.52766 1.5219 0.2173 1.917
CarryHigh 1 0.40777 0.44493 0.8400 0.3594 1.503
CarryMedum 1 0.28252 0.53024 0.2839 0.5942 1.326

Figure 13. Parameter Estimates for Exercise Data

The results for the joint tests for Carryover and Pe-
riod are displayed in Figure 14. The Wald statistics
indicate that neither effect is important.

A reduced model seemed to fit the data adequately.

Linear Hypotheses Testing Results

Wald
Label Chi-Square DF Pr > ChiSq

CARRYOVER 0.8723 2 0.6465
PERIOD 0.7083 2 0.7018

Figure 14. Test Results for Carryover and Period

Exact Logistic Regression

Sometimes, sample sizes are simply not appropriate
for the usual logistic regression or conditional logis-
tic regression strategies to be appropriate. In those
cases, exact logistic regression provides a means of
producing regression estimates and standard error
that are statistically valid. You use conditioning princi-
ples similar to those used in conditioning on observed
margins of contingency tables to obtain exact tests.
You eliminate nuisance parameters by conditioning on
the observed values of their sufficient statistics and
then use the exact permutational distribution of the
sufficient statistics for the parameters of interest. You
can apply conditional inference to both the unstratified
and stratified logistc regression settings. See Mehta
and Patel (1995). LogXact software, Cytel Software
Corporation (1993), provides this capability currently
and it is likely to appear in the LOGISTIC procedure
sometime in the near future.

Weighted Least Squares Modeling of Cate-
gorical Response Functions

While weighted least squares may not longer be the
workhorse of categorical data modeling, it still plays
an important role in providing a strategy for model-
ing the variation among various functions that can be
computed for categorical data. Essentially you are
applying noniterative generalized least squares to re-
sponse functions that are of interest and using an ob-
served covariance matrix as the weights. If you have
adequate sample sizes, the response functions have
an approximate multivariate normal distribution and
you can carry out hypothesis tests concerning linear

combinations of them. Rank meaures of association
are one type of response function that may be of in-
terest; another is incidence densities.

Modeling Rank Measures of Association Statis-
tics

Many studies include outcomes that are ordinal in na-
ture. When the treatment is also ordinal, rank mea-
sures of correlation can be modeled using WLS meth-
ods to investigate various treatment effects and inter-
actions; such an analysis can often complement sta-
tistical models such as the proportional odds model.
Refer to Carr et al (1989) for an example of such an
analysis applied to Goodman-Kruskal rank correlation
coefficients, also known as gamma coefficients.

The Mann-Whitney rank measure of association
statistics are also useful statistics for assessing the
association between an explanatory variable and an
ordinal outcome. Consider the data from a ran-
domized clinical trial of chronic pain (Stokes et al,
1995). Investigators compared a new treatment with
a placebo and assessed the response for a particular
condition. Patients were obtained from two investi-
gators whose design included stratification relative to
four diagnostic classes.

Table 1 displays these data.

Table 1. Chronic Pain Data
Diagnostic Patient Status

Class Researcher Treatment P F M G E
I A Active 3 2 2 1 0
I A Placebo 7 0 1 1 1
I B Active 1 6 1 5 3
I B Placebo 5 4 2 3 3
II A Active 1 0 1 2 2
II A Placebo 1 1 0 1 1
II B Active 0 1 1 1 6
II B Placebo 3 1 1 5 0
III A Active 2 0 3 3 2
III A Placebo 5 0 0 8 1
III B Active 2 4 1 10 3
III B Placebo 2 5 1 4 2
IV A Active 8 1 3 4 0
IV A Placebo 5 0 3 3 0
IV B Active 1 5 2 3 1
IV B Placebo 3 4 3 4 2

You may be interested in computing the Mann-
Whitney rank measure of association as a way of as-
sessing the extent to which patients with active treat-
ments are more likely to have better response sta-
tus than those with placebo. You may then be inter-
ested in seeing whether diagnostic status and investi-
gator influence this association through model-fitting.
You can perform such modeling by first computing the
Mann-Whitney statistics and their standard errors and
then using these estimates as input to the CATMOD
procedure to perform modeling.

You can compute the Mann-Whitney measures as
functions of the Somer’s D measures, which are pro-
duced by the FREQ procedure.

Ui =
fSomer’s D C|R + 1g

2
and Si =

SE

2
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Si is the standard error of Ui, the Mann-Whitney
statistic.

The following statements produce measures of asso-
ciation for the eight 2 � 4 tables formed for the com-
bination of investigator and treatment.

data cpain;
input dstatus $ invest $ treat $
status $ count @@;
datalines;

I A active poor 3 I A active fair 2
I A active moderate 2 I A active good 1
I A active excel 0 I A placebo poor 7
I A placebo fair 0 I A placebo moderate 1
I A placebo good 1 I A placebo excel 1
I B active poor 1 I B active fair 6
I B active moderate 1 I B active good 5
I B active excel 3 I B placebo poor 5
I B placebo fair 4 I B placebo moderate 2
I B placebo good 3 I B placebo excel 3
II A active poor 1 II A active fair 0
II A active moderate 1 II A active good 2
II A active excel 2
...
proc freq;

weight count;
tables dstatus*invest*treat*status/ measures;

run;

Figure 15 displays the table for Diagnostic Status I
and Investigator A. Figure 16 displays the measures
of association for that table.

The FREQ Procedure

Table 1 of treat by status
Controlling for dstatus=I invest=A

treat status

Frequency|
Row Pct |poor |fair |moderate|good | excel | Total
---------|--------|--------|--------|--------|--------|--------
active | 3 | 2 | 2 | 1 | 0 | 8
---------|--------|--------|--------|--------|--------|--------
placebo | 7 | 0 | 1 | 1 | 1 | 10

| 70.00 | 0.00 | 10.00 | 10.00 | 10.00 |
---------|--------|--------|--------|--------|--------|--------
Total | 10| 2| 3| 2 | 1| 18

Figure 15. Frequency Table

Statistics for Table 1 of treat by status
Controlling for dstatus=I invest=A

Statistic Value ASE
------------------------------------------------------
Gamma -0.2857 0.3515
Kendall’s Tau-b -0.1763 0.2253
Stuart’s Tau-c -0.1975 0.2485

Somers’ D C|R -0.2000 0.2514
Somers’ D R|C -0.1553 0.2026

Pearson Correlation -0.0866 0.2331
Spearman Correlation -0.1900 0.2416

Figure 16. Measures of Association

Table 2 displays the calculated values.

Table 2. Mann Whitney Statistics
Diagnostic
Class Researcher Somer’s ASE Ui Si

I A .2000 .3515 .6000 .1758
I B .2002 .1915 .6001 .0958
II A .2083 .3622 .6042 .1811
II B .6778 .1834 .8389 .0917
III A .0260 .2271 .5130 .1136
III B .1893 .1923 .5947 .0962
IV A .0000 .2007 .5000 .1004
IV B �:0156 .2116 .4922 .1058

You compute the covariances and then create a data
set that contains the estimates and the covariance
matrix. The following DATA step creates the data set.

data MannWhitney;
input b1-b8 _type_ $ _name_ $8.;
datalines;

.6000 .6011 .6042 .8389 .5130 .5947 .5000 .4922 parms

.03091 .0000 .0000 .0000 .0000 .0000 .0000 .0000 cov b1

.0000 .00918 .0000 .0000 .0000 .0000 .0000 .0000 cov b2

.0000 .0000 .3280 .0000 .0000 .0000 .0000 .0000 cov b3

.0000 .0000 .0000 .0084 .0000 .0000 .0000 .0000 cov b4

.0000 .0000 .0000 .0000 .0129 .0000 .0000 .0000 cov b5

.0000 .0000 .0000 .0000 .0000 .0093 .0000 .0000 cov b6

.0000 .0000 .0000 .0000 .0000 .0000 .0101 .0000 cov b7

.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0112 cov b8
;

This data set is then input into the CATMOD pro-
cedure. Thus, instead of generating functions from
an underlying contingency table, the CATMOD pro-
cedure does modeling directly on the input functions
using the input covariance matrix as the weights. You
define the profiles for each function with the PROFILE
option in the FACTORS statement. You also define
your factors, along with the number of levels for each,
and describe the effects you want to include in your
model with the –RESPONSE– option.

proc catmod data=MannWhitney;
response read b1-b8;
factors diagnos $ 4 , invest $ 2 /

_response_ = diagno invest
profile = (I A,

I B,
II A,
II B,
III A,
III B,
IV A,
IV B);

model _f_ = _response_ / cov;
run;

The ANOVA table results follow. The residual Wald
test is a test of the diagnostic class and investigator
interaction, which is non-significant with a p-value of
0.78. Neither diagnostic class nor investigator appear
to explain significant variation, with diagnostic class
appearing to be modestly influential with a p-value of
0.093.
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Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Intercept 1 213.14 <.0001
diagnos 3 6.42 0.0930
invest 1 0.58 0.4469

Residual 3 1.06 0.7862

Figure 17. Main Effects Output

By submitting another MODEL statement that speci-
fies the identity matrix as the model matrix, you can
obtain a test of the hypothesis that the measures have
the same value for each diagnostic class and investi-
gator combination.

model _f_ = ( 1 0 0 0 0 0 0 0 ,
0 1 0 0 0 0 0 0 ,
0 0 1 0 0 0 0 0 ,
0 0 0 1 0 0 0 0 ,
0 0 0 0 1 0 0 0 ,
0 0 0 0 0 1 0 0 ,
0 0 0 0 0 0 1 0 ,
0 0 0 0 0 0 0 1 ) ;

This is the seven degree test that is labeled ‘residual.’

Analysis of Variance

Source DF Chi-Square Pr > ChiSq
--------------------------------------------
Model|Mean 7 9.41 0.2247

Residual 0 . .

Figure 18. Intercept-Only Model

You can’t reject this hypothesis with these data.

Modeling Incidence Densities

Incidence densities are defined as the ratio of the
number of episodes of a disease or illness to the total
person-time at risk. These measures are often of in-
terest in epidemiological work. Lavange et al (1994)
studied the effect of passive smoking exposure on the
incidence of lower respiratory illness in young chil-
dren. Measurements were made over time. The in-
vestigators used WLS to model the incidence densi-
ties; because the study was a complex survey design,
the covariance structure was determined with sam-
ple survey methods. Interest was in comparing the
marginal rates of lower respiratory disease between
exposed and unexposed groups. The ratio estimates
and their covariances were obtained with SUDAAN
software, and then the response functions and covari-
ances wered used as input to the CATMOD procedure
for WLS modeling. The exposed group had a signifi-
cantly higher rate of illness.

Summary

This paper describes recent enhancements in the
area of categorical data analysis and discusses sev-
eral applications of the recent methodology. Exact

methods and quasi-likelihood methods provide ways
to analyze data that previously presented many prob-
lems. The SAS System includes software for many of
these newer methodologies and should contain addi-
tional features that facilitate the recent methodological
advances in the next several years.

References

Barnhart, H. and Williamson, J (1998). Goodness-of-
Fit Tests for GEE Modeling with Binary Responses,
Biometrics, 54, 720–729.

Cytel Software Corporation (1993), LogXact: Soft-
ware for Exact Logistic Regression, Cytel Software
Corporation, Cambridge, MA.

Carr, G. J., Hafner, K. B., and Koch, G. G., (1989),
“Analysis of rank measures of association for ordinal
data from longitudinal studies”, Journal of the Ameri-
can Statistical Association, 84, 797–804.

Diggle, P.J., Liang, K.-Y. and Zeger, S.L. (1994). Anal-
ysis of Longitudinal Data, Oxford: Oxford Science

Liang, K.-Y. and Zeger, S.L. (1986). Longitudi-
nal Data Analysis Using Generalized Linear Models,
Biometrika, 13–22

LaVange, L. M., Keyes, L. L., Koch, G. G., and Margo-
lis, P. A. (1994). Application of sample survey meth-
ods for modelling ratios to incidence densities, Statis-
tics in Medicine, 13, 343–355.

Koch, G. G., Landis, J. R., Freeman, J. L., Free-
man, D. H., and Lehnen, R. G. (1977). A general
methodology for the analysis of experiments with re-
peated measurement of categorical data, Biometrics,
33, 133–158.

Mehta, C. R. and Patel, N. R. (1995), “Exact logis-
tic regression: theory and examples”, Statistics in
Medicine, 14, 2143–1260

Nelder, J.A., and Wedderburn, R.W.M. (1972), Gener-
alized Linear Models, Journal of the Royal Statistical
Society A, 135, 370–384.

Preisser, J. S., and Quaqish, B. F. (1996), Dele-
tion diagnostics for generalised estimating equations,
Biometrika, 83, 3, 551–562

Preisser, J. S., and Koch, G. G., (1997), “Categori-
cal Data Analysis in Public Health”, Annual Review of
Public Health, 18, 51–82

Stokes, M. E., Davis, C. S., and Koch, G. G. (1995).
Categorical Data Analysis Using the SAS System,
Cary: SAS Institute, Inc.

Tudor, G., Koch, G. G., and Catellier, D. (1998), “Sta-
tistical Methods for Crossover Designs in Bioenvi-

10



ronmental and Public Health Studies”, Handbook of
Statistics: Bioenvironmental and Public Health Statis-
tics, 17, editors C.R. Rao and P.K. Sen (forthcoming).

Zeger, S.L. and Liang, K.-Y. (1986). Longitudinal Data
Analysis for Discrete and Continuous Outcomes, Bio-
metrics, 42 121–130

Author

Maura E. Stokes, SAS Institute Inc., SAS Campus
Drive, Cary, NC 27513. FAX (919) 677-4444 Email
sasmzs@wnt.sas.com

SAS is a registered trademarks of SAS Institute Inc.
in the USA and other countries.  indicates USA
registration.

Other brand and product names are registered trade-
marks or trademarks of their respective companies.

Version 2.0

11


