15.2 - Exponential Properties
15.2 - Exponential PropertiesHere, we present and prove four key properties of an exponential random variable.
Theorem
The exponential probability density function:
\(f(x)=\dfrac{1}{\theta} e^{-x/\theta}\)
for \(x\ge 0\) and \(\theta>0\) is a valid probability density function.
Proof
Theorem
The moment generating function of an exponential random variable \(X\) with parameter \(\theta\) is:
\(M(t)=\dfrac{1}{1-\theta t}\)
for \(t<\frac{1}{\theta}\).
Proof
\(M(t)=E(e^{tX})=\int_0^\infty e^{tx} \left(\dfrac{1}{\theta}\right) e^{-x/\theta} dx\)
Simplifying and rewriting the integral as a limit, we have:
\(M(t)=\dfrac{1}{\theta}\lim\limits_{b \to \infty} \int_0^b e^{x(t-1/\theta)} dx\)
Integrating, we have:
\(M(t)=\dfrac{1}{\theta}\lim\limits_{b \to \infty} \left[ \dfrac{1}{t-1/\theta} e^{x(t-1/\theta)} \right]^{x=b}_{x=0}\)
Evaluating at \(x=0\) and \(x=b\), we have:
\(M(t)=\dfrac{1}{\theta}\lim\limits_{b \to \infty} \left[ \dfrac{1}{t-1/\theta} e^{b(t-1/\theta)} - \dfrac{1}{t-1/\theta} \right]=\dfrac{1}{\theta}\lim\limits_{b \to \infty} \left\{ \left(\dfrac{1}{t-1/\theta}\right) e^{b(t-1/\theta)} \right\}-\dfrac{1}{t-1/\theta}\)
Now, the limit approaches 0 provided \(t-\frac{1}{\theta}<0\), that is, provided \(t<\frac{1}{\theta}\), and so we have:
\(M(t)=\dfrac{1}{\theta} \left(0-\dfrac{1}{t-1/\theta}\right)\)
Simplifying more:
\(M(t)=\dfrac{1}{\theta} \left(-\dfrac{1}{\dfrac{\theta t-1}{\theta}}\right)=\dfrac{1}{\theta}\left(-\dfrac{\theta}{\theta t-1}\right)=-\dfrac{1}{\theta t-1}\)
and finally:
\(M(t)=\dfrac{1}{1-\theta t}\)
provided \(t<\frac{1}{\theta}\), as was to be proved.
Theorem
The mean of an exponential random variable \(X\) with parameter \(\theta\) is:
\(\mu=E(X)=\theta\)
Proof
Theorem
The variance of an exponential random variable \(X\) with parameter \(\theta\) is:
\(\sigma^2=Var(X)=\theta^2\)