
Essential R

Eric Nord

2

Contents

Introduction 5

1 Basics 9

The console, the editor, and basic syntax in R 9

1.1 The Terminal . 9

1.2 Working with Vectors . 13

1.3 Sub-setting Vectors - the magic “[]” 14

1.4 Other Useful Functions . 19

1.5 A Comment about R Snytax . 20

1.6 Loops in R. 21

1.7 Exercises. 22

2 Qualitative Variables 25

Creating and using categorical variables in R 25

2.1 Introduction . 25

2.2 The Function factor(). 26

2.3 Visualizing Qualitative Variables. 28

2.4 How Factors are Stored in R . 31

2.5 Changing Factor Levels . 33

2.6 Hypothesis Testing for Factors 37

2.7 Exercises. 39

3

4 CONTENTS

3 Quantitative Variables 41

Creating and using continuous variables in R 41

3.1 Introduction . 41

3.2 Working with Numeric Data . 41

3.3 Hypothesis Testing . 42

3.4 Resistant measures of center and spread 43

3.5 Visualizing Quantitative Data . 45

3.6 Converting Quantitative Data to Qualitative 51

3.7 Fitting and Modeling Distributions 53

3.8 Exercises. 55

4 Documenting Your Work 57

How not to forget what you were doing 57

4.1 Introduction . 57

4.2 Background . 58

4.3 An Example . 59

4.4 Compilation from the console . 60

4.5 Help! I’m Getting an Error! . 61

4.6 Exercises. 63

5 Help in R 65

What to do when you need help . 65

5.1 Introduction. 65

5.2 R’s Help System . 65

5.3 Help! I Don’t Know Which Function to Use. 66

5.4 I Need More Help . 67

5.5 Understanding Errors . 68

5.6 Exercises . 68

CONTENTS 5

6 Bivariate Data 71

Basic approaches to dealing with two variables 71

6.1 Introduction . 71

6.2 Two Qualitative Variables . 71

6.3 Two Quantitative Variables . 78

6.4 Qualitative and Quantitative Variables 84

6.5 Exercises . 87

7 The Data Frame 89

The R equivalent of the spreadsheet 89

7.1 Introduction . 89

7.2 Data Frames . 89

7.3 Attaching data . 94

7.4 Changing Data Frames . 95

7.5 Exercises . 97

8 Importing Data 99

Getting your data into R . 99

8.1 Introduction . 99

8.2 Importing Data . 99

8.3 An Example . 100

8.4 An Easier Way (with Caveats!) 102

8.5 Importing Other Data Types . 104

8.6 Some Typical Problems . 104

8.7 Exercises . 108

9 Manipulating Data 109

An introduction to data wrangling . 109

9.1 Introduction . 109

9.2 Summarizing Data . 109

9.3 Reformatting Data from “Wide” to “Long” 116

9.4 Reshape . 118

6 CONTENTS

9.5 Merging Data Sets . 121

9.6 More about Loops . 122

9.7 Exercises . 124

10 Working with multiple variables 125

Some basic tools for multivariate data 125

10.1 Introduction . 125

10.2 Working with Multivariate Data 125

10.3 An Example . 131

10.4 PCA . 135

10.5 Clustering . 142

10.6 Exercises . 146

11 Linear Models I 147

Linear regression . 147

11.1 Introduction . 147

11.2 Violation of Assumptions and Transformation of Data 147

11.3 Hypothesis Testing . 155

11.4 Predictions and Confidence Intervals from Regression Models . . 159

11.5 Exercises . 162

12 Linear Models II 163

ANOVA . 163

12.1 I. Introduction . 163

12.2 One-way ANOVA . 163

12.3 For violations of assumptions. 167

12.4 Multi-Way ANOVA - Understanding summary(lm()) 168

12.5 Multi-Way ANOVA - Calculating group means 171

12.6 Multi-Way ANOVA - Getting a handle on interactions 172

12.7 Multi-Way ANOVA - Tukey HSD and family-wise error 174

12.8 HSD.test - a useful tool for ANOVA 175

12.9 Exercises . 176

CONTENTS 7

13 Linear Models III 179

More Linear Models . 179

13.1 Introduction . 179

13.2 Multiple Regression . 179

13.3 ANCOVA . 183

13.4 About Sums of Squares in R . 186

13.5 Resistant Linear Models . 187

13.6 Specifying Contrasts. 189

13.7 More Complex Designs . 192

13.8 Exercises . 195

14 Productivity Tools in R 197

More advanced documentation and managing projects 197

14.1 Introduction . 197

14.2 Getting stated with markdown 198

14.3 Managing projects . 201

14.4 Using R and LaTeX via Knitr . 202

14.5 Exercises . 202

15 Visualizing Data I 205

Enhancing scatter plots . 205

15.1 Introduction . 205

15.2 Basic Scatter Plots . 206

15.3 Multi-Panel Plots I: Layout . 210

15.4 Adding a Secondary y-axis . 215

15.5 Summary . 217

15.6 Exercises . 217

16 Visualizing Data II 219

Errorbars and polygons . 219

16.1 Introduction . 219

16.2 Scatter Plot with Error Bars . 219

8 CONTENTS

16.3 Scatter Plots with Confidence Ribbons 224

16.4 Error Bars in 2 Dimensions . 228

16.5 Reversing Axes . 230

16.6 Summary . 232

16.7 Fun with R graphics . 232

16.8 Exercises . 234

17 Visualizing Data III 235

Boxplots and barplots . 235

17.1 Introduction . 235

17.2 Boxplots . 235

17.3 Barplots . 242

17.4 Summary . 246

17.5 Exercises . 247

18 Mixed Effects Models 249

More advanced documentation and managing projects 249

18.1 Introduction . 249

18.2 A basic example . 250

18.3 Split-plots . 258

18.4 Summary . 262

18.5 Exercises . 262

19 Fitting Other Models 265

Non-linear least squared models, logistic regession 265

19.1 Introduction . 265

19.2 Logistic regression . 265

19.3 Fitting other non-linear models 274

19.4 Exercises . 278

CONTENTS 9

20 Writing functions 281

Customizing R with functions and packages 281

20.1 Introduction . 281

20.2 Creating a function . 281

20.3 Creating a package . 288

20.4 Exercises . 290

10 CONTENTS

Introduction

R is the open-source statistical language that seems poised to “take over the
world” of statistics and data science. R is really more than a statistical package
- it is a language or an environment designed to potentiate statistical analysis
and production of high quality graphics (for more on information see www.r-
project.org/about.html).
Originally developed by two statisticians at the University of Auckland as a
dialect of the S statistical language, since 1997 the development of R has been
overseen by a core team of some 20 professional statisticians (for more on infor-
mation see www.r-project.org/contributors.html).
Many new users find that R is initially hard to use. One needs to learn to write
code, and there are no (or few) menu tools to make the process easier. In fact,
when a grad school friend first excitedly described R to me in 2004 my first
thought was “Why would I want to learn that?”. I dabbled in R several times
following that, but was put off by the difficulties I encountered. I finally began
using R in earnest as an environment for some simulation modeling, and then
later for statistical and graphical work.
These notes were developed for a short introduction to R for students who
already understand basic statistical theory and methods, so the focus is mostly
on R itself. Much of the inspiration for these notes comes from “SimpleR” 1

by John Verzani. (“SimpleR” was written to teach both R and introductory
statistics together, but I successfully used it as the basis for an introduction to
R for several years). As my course has evolved, I felt the need to develop my
own materials, but the debt to John Verzani is substantial - many of the good
bits in what follows are probably inspired by his work, particularly the didactic
style, and the errors are certainly all mine.
A note about formatting in this document: To keep things clear, in this
document, R output is shown in a black console (fixed width) font preceded by
“#”, like this:

Min. 1st Qu. Median Mean 3rd Qu. Max.
12.00 28.50 51.50 47.90 62.75 83.00

1“SimpleR” is also still available at http://www.math.csi.cuny.edu/Statistics/R/simpleR/.

11

http://www.math.csi.cuny.edu/Statistics/R/simpleR/

12 CONTENTS

while R code is shown in a console font in colored text without the preceding
#, like this:

summary(c(23, 45, 67, 46, 57, 23, 83, 59, 12, 64))

Where we mention R functions or arguments by name, they will appear in
the console font, and the names of functions will be followed by parentheses,
e.g. mean().
You should be able to download these notes in a Zip file with associated folders.
Unzip this to a convenient location and you will have an directory (folder) called
“EssentialR”. These notes assume that you are using the “EssentialR” directory
as the working directory (see Ch 5), and examples point to files in the “Data”
directory in “EssentialR”.

Getting R

You can download R from CRAN (http://cran.r-project.org/). I also recom-
mend that you then install the excellent RStudio IDE (http://www.rstudio.
com/ide/download/) - while not strictly necessary, it makes working in R so
much easier that it is worth using.

Other Resources

For an introduction to statistics using R (or a basic R reference), I recommend
the following books:
Using R for Introductory Statistics. 2004. John Verzani. Chapman &
Hall/CRC. (an extension of SimpleR)
Statistics: An introduction using R. 2005. Michael J. Crawley. Wiley and Sons.
(This was useful enough to me when I began learning R that I bought a copy.).
Quick-R (http://www.statmethods.net) is a nice online overview of basic R
functions and methods. Useful reference.
Gardner’s own (http://www.gardenersown.co.uk/Education/Lectures/R): a
nice look at using R for analysis.
R Wikibook (http://en.wikibooks.org/wiki/Statistical_Analysis:_an_
Introduction_using_R): an online book for a course like this.
IcebreakeR (http://cran.r-project.org/doc/contrib/Robinson-icebreaker.pdf):
another PDF book for a course like this.
Also see the “Contributed Documentation” tab at CRAN (http://cran.r-project.
org/doc/contrib) for links to more resources.
The citation for R (type citation() to get it) is as follows:

http://cran.r-project.org/
http://www.rstudio.com/ide/download/
http://www.rstudio.com/ide/download/
http://www.statmethods.net
http://www.gardenersown.co.uk/Education/Lectures/R
http://en.wikibooks.org/wiki/Statistical_Analysis:_an_Introduction_using_R
http://en.wikibooks.org/wiki/Statistical_Analysis:_an_Introduction_using_R
http://cran.r-project.org/doc/contrib/Robinson-icebreaker.pdf
http://cran.r-project.org/doc/contrib
http://cran.r-project.org/doc/contrib

CONTENTS 13

R Core Team (2013). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/.

These notes were written in Markdown, and complied using the excellent R pack-
age “bookdown” by Yihui Xie - for more information see: https://bookdown.org.

Of course, I would be remiss not to acknowledge the R core team and the other
members of the R user community whose efforts have combined to make R such
a powerful tool.

Figure 1: CC image

Eric Nord, Greenville IL

Dr.Eric.Nord@gmail.com

April 1, 2023

https://bookdown.org
mailto:Dr.Eric.Nord@gmail.com

14 CONTENTS

Chapter 1

Basics

The console, the editor, and basic syntax in R

1.1 The Terminal

One of the things new users find strange about R is that all you have to interact
with is a terminal (aka console) and (if you are using a GUI or IDE) an editor.
This is very different from Excel or Minitab or similar applications. As we’ll
see, this has some advantages, but ease of learning might not be one of them.
In the meantime, you might find it helpful to imagine that your workspace is a
bit like a spreadsheet, and the terminal a bit like the “formula bar”, where you
have to type input to the spreadsheet, or see what is in the spreadsheet.

The R “terminal”, or “console” is where commands can be entered and results
are displayed. When you start R on your computer, it looks something like this:

R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

15

16 CHAPTER 1. BASICS

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.74 (7950) x86_64-apple-darwin17.0]

[Workspace restored from /Users/enord/.RData]
[History restored from /Users/enord/.Rapp.history]

>

Notice the “>” at the end of all this? “>” is the R prompt - it means R is waiting
for you to do something. If you are using RStudio, the terminal is on the left or
lower left pane. Since R is waiting for us, let’s try some things. Type (or copy
& paste) the following lines (one at a time) into the console. When you press
“Enter” you tell R to evaluate each expression.

2 + 2

[1] 4

4 * 5

[1] 20

6ˆ2

[1] 36

3 + 5 * 2

[1] 13

(3 + 5) * 2

[1] 16

1.1. THE TERMINAL 17

2+2

Notice a couple of things:
1. spaces don’t matter - 2+2 is the same as 2 + 2
2. the standard operators +,-,*,/,and ˆ all function as expected
3. standard order of operations is respected, and can be altered using parenthe-
ses
4. all answers are preceded by [1] - we’ll see why in a bit
5. an expression preceded by “#” is not evaluated – “#” is the comment charac-
ter in R. Anything between a “#” and the end of a line is treated as a comment
and is not evaluated.

A common place new useRs get confused is when the console displays a + rather
than the prompt >. This simply means that the last expression entered was
incomplete. Try entering 2+ and see what happens. You need to complete the
addition before you get a prompt again. You will almost certainly experience
this later, as unmatched (will lead to a +.

Let’s create a variable (also called an object in R), “a” and give it a value of 5.

a = 5 # =

Here we used the = to assign the value 5 to a. Those of you with some pro-
gramming experience may wonder about data types. R can handle many types
of data (including numerical, character, logical, factors, matrices, arrays, and
lists), and we’ll discuss them in more detail later. Now we have created the
object a, we can see what it is:

a

[1] 5

Notice that the value of a, 5, is returned. We can also calculate with an object:

a * 2

[1] 10

a

[1] 5

18 CHAPTER 1. BASICS

a = a * 2

Notice that when we tell R a*2 we get the result, but then when we type a
we can see a is not changed. To change an object in R we must assign it a
new value. What do you think we will get if we type a now? What if we type
A? Remember that R is case sensitive! (We’ve just highlighted two of more
common errors I see and make with R: 1. forgetting to assign some output that
I intended to save to an object and 2. case errors.)

A note about = and <-. Assignment in R can be done using = or using the
assignment operator : <- or ->. The assignment operator (<-) is directional,
and the leftward assign is far more common than the right. In the case of = the
“name” is assumed to be on the left - i.e. = is equivalent to <-. In these notes I
generally use <-, so that = is reserved for passing arguments to functions. (The
keyboard shortcut for <- in RStudio is “alt+-”.)

When you create an object in R it exists in your environment or workspace.
You can see what is in your workspace by typing ls(), which is short for “list”.
If you are using RStudio, you can also go to the “Environment” tab which is
usually in the upper right pane.

You can remove things from your workspace using rm() - for example rm(a)
will remove a from your workspace. Try ls() now. If you type a you’ll get an
error: Error: object 'a' not found. This makes sense, since we’ve removed
(deleted) a. 1

A note about the console and the editor. In RStudio you can go to the File
menu and choose New>R script and new pane will open above your console.
This is your “Editor”, and you can actually have multiple files open here (as
tabs). An R script file contains R code and comments (see above re: com-
ments) , but not output (though you can paste output into a script file, but you
should put it behind comments so R doesn’t try to run it). You can easily run
code from the editor. Open an new script file and type # editor demo. Now
press Ctrl+Enter, and R will run that command (since it is a comment, it will
just be written to the console). Now type a*4 and press Ctrl+Enter (Mac:
CMD+Return).

Scripts can easily be saved 2 for future reference or to continue your work later.
The console can’t easily be saved, but it contains the output from your R code.
(There is a logic to this - if you have all the code saved, the console output is
easily recreated - just run all the commands.) In the console the up arrow will

1Object names in R: In brief they consist of letters, numbers, and the dot and underscore
characters. Names must begin with a letter or a dot followed by a letter. The dot has no
special meaning in object names in R.

2A problem that will prevent saving files from the editor: failure to extract the Essential R
folder. In a few cases Windows users have been unable to save anything into the Essential R
folder they downloaded. This has always been caused by failure to actually extract (“unzip”)
the file to create a folder in the user’s home folder on the hard-drive of the computer.

1.2. WORKING WITH VECTORS 19

retrieve previous commands, which can save you a fair amount of typing (often
it is faster to edit a previous command than to type it over).

1.2 Working with Vectors

One of the ways R makes working with data easy is that R natively handles
vectors, meaning that (almost) anything you can do to a value in R you can do
to a vector of values. As we’ll see, this becomes very useful.

Imagine that I count the number of SMS text messages I receive each day for a
week and enter them in R as sms:

sms <- c(0, 1, 2, 0, 0, 0, 1)

Notice:
1. I get very few SMS messages - I like it this way!
2. We use a new function (command) here -c- it concatenates values together
into a vector.
3. The function c is followed by parentheses (). All functions in R are fol-
lowed by parentheses that contain the arguments to the function, like this:
function(argument1,argument2).
4. Within the parentheses the different values are separated by commas (,)
- this is also standard in R - the arguments to a function are separated by
commas, and here the values are the arguments to the function c().

R can do many things easily with vectors: mathematical operations, sorting,
and sub-setting.

sms + 5

[1] 5 6 7 5 5 5 6

sms * 5

[1] 0 5 10 0 0 0 5

sms/2

[1] 0.0 0.5 1.0 0.0 0.0 0.0 0.5

20 CHAPTER 1. BASICS

sort(sms)

[1] 0 0 0 0 1 1 2

Notice that if you type sms the original data has not been changed - to change the
original data you always need to assign the result 3. This is design principle
in R - a function should never change anything in your workspace; objects in the
workspace are only changed by assignment. If you want a function to change
an object you must assign the result of the function to that object.

1.3 Sub-setting Vectors - the magic “[]”

It is often the case when working with data that we want to select only specific
parts of the data (think “filtering” in Excel). In R we do this by “sub-setting”
vectors. In R the square brackets [] are used for indexing vectors, matrices,
data tables, and arrays. Here we’ll just consider vectors. The more you gain
familiarity with R, the more you learn the power of the [].

sms[3]

[1] 2

sms[2:4]

[1] 1 2 0

sms[-3]

[1] 0 1 0 0 0 1

sms[-(2:3)]

[1] 0 0 0 0 1

sms[-c(2, 3, 7)]

[1] 0 0 0 0
3This is a basic point that is very important, and often forgotten.

1.3. SUB-SETTING VECTORS - THE MAGIC “[]” 21

Here we’ve told R to give us the 3rd element of sms and the 2nd-4th elements
of sms - the : symbol means “through” - you can test this by typing 5:9:

5:9

[1] 5 6 7 8 9

A minus sign “-” in the [], - means “all elements except”, and this can be
used with a range (2:3) or a more complex list (c(2,3,7)), though it will be
necessary to add parentheses as we have done here. This is because -2:3 returns
-2 -1 0 1 2 3, and the -2th element of a vector does not make sense!

In fact, a more general and useful approach is logical extraction - selecting parts
of a vector based on some logical test. For example, if we wanted to know the
average (mean) number of sms messages I received on days that I received any
sms messages, we could do this easily with logical extraction. sms>0 applies
the logical test >0 to sms and returns a logical vector (TRUE or FALSE for each
element of the vector) of the result. This can be used to specify which elements
of the vector we want:

sms > 0

[1] FALSE TRUE TRUE FALSE FALSE FALSE TRUE

sms[sms > 0]

[1] 1 2 1

It is worth noting that R treats logical values as FALSE=0 and TRUE=1. Thus
sum(sms) will give us the total number of sms messages, but sum(sms>0) will
give us the number of TRUE values in the logical vector created by the logical
test sms>0. This is equivalent to the number of days where I received any sms
messages.

sum(sms > 0)

[1] 3

We can also use the function which() for logical extraction, and we can then
use the function mean() to get the average number of sms messages on days
where I received messages:

22 CHAPTER 1. BASICS

which(sms > 0)

[1] 2 3 7

sms[which(sms > 0)]

[1] 1 2 1

mean(sms[which(sms > 0)])

[1] 1.333333

Notice:
1. The function which() returns a vector of indices rather than a logical vector.
2. The final line here shows something that is very typical in R - we used one
function, which() as an argument to another function, mean(). This type of
programming can be confusing as there are square brackets and parentheses all
over the place. I find that I need to build it up step by step, as you can see
we’ve done here.
3. It is a good practice to develop the skill of reading such a statement from the
inside out rather than left to right. mean(sms[which(sms>0)]) could be read
as “use only the values of sms that are greater than 0 and take the mean”. 4. A
small command like this already has 3 nested sets of parentheses and brackets - it
is really easy to drop one by mistake 4. If you entered mean(sms[which(sms>0)]
(omitting the closing “)”) R will notice that your command is incomplete, and
instead of a result and a new line with the prompt (>) it will give no answer
(as the command is not complete) and will give a + - this just means that R is
waiting for the command to be complete.

You can also use the indexing operator to change part of vector :

sms

[1] 0 1 2 0 0 0 1

4Tip: Many text editing programs (including the editor in RStudio) will balance parenthe-
ses and brackets - when you type (the matching) is added, and the cursor is placed within
them. Also, when you place your cursor on a parenthesis or bracket the matching on will be
highlighted. If your text editor does not do this, find one that does - it will save you many
headaches.

1.3. SUB-SETTING VECTORS - THE MAGIC “[]” 23

sms[1] <- 1
sms

[1] 1 1 2 0 0 0 1

This approach could be combined with logical extraction; for example if you
wanted to replace all the zero values with 1: sms[which(sms==0)]<-1. Notice
that when making a logical test R expects the double equal sign ==; this is to
differentiate between the assignment or argument use of the equal sign = and
the logical use ==. This is a common source of errors.

Recall the mysterious [1] that is returned with our results? This just means
the first element of the result is shown. If your vector is long enough to go to
a second (or third) line, each line will begin showing the element number that
begins the line:

1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
[35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Notice that each line begins with the index within square brackets ([]) for that
element.

It is also worth noting that you can use one variable to index another. First
we’ll make some vectors.

x <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
y <- 21:30
z <- c(2, 4, 6)

Now we can try various uses of []:

x[y]

[1] NA NA NA NA NA NA NA NA NA NA

What is going on here? What does the NA mean?

24 CHAPTER 1. BASICS

x[z]

[1] "b" "d" "f"

The z-th element of x.

y[z]

[1] 22 24 26

z[y]

[1] NA NA NA NA NA NA NA NA NA NA

The second line here gives many NA’s since z doesn’t have enough elements to
match some values of y.

x[rev(z)]

[1] "f" "d" "b"

y[x]

[1] NA NA NA NA NA NA NA NA NA

rev() just reverses its argument. The x-th elements of y fails because x can’t
be “coerced”” to numeric.

y * z

Warning in y * z: longer object length is not a multiple
of shorter object length

[1] 42 88 138 48 100 156 54 112 174 60

1.4. OTHER USEFUL FUNCTIONS 25

This warning is important. One might naively assume that R won’t do the
element-wise addition or multiplication of two vectors of different lengths, but
it does by recycling the shorter vector as necessary, with a warning if the length
of longer one is not a multiple of the length of the shorter. Pay attention to
your vector lengths!

Earlier we learned how we can change elements of a vector using the indexing
operator. (e.g. sms[5]<-3. There are other tools in R that allow us to edit data.
The most useful in RStudio is edit(). For example, edit(sms) will bring up a
small edit window in R studio. If you change the first element from 1 back to
zero and press save, the console will show the edited value of sms.

However if you type sms again, you’ll find that the original data hasn’t been
altered. As we said before, if you want to change values in R you have to assign
the result of you change 5 -so sms<-edit(sms) would actually save the changes.
Of course, you might want to make a copy of the data and change that - simple,
just assign the result of edit to another name: sms.2<-edit(sms).

The R functions de() and data.entry() are similar to edit(), but aren’t
supported in RStudio, so we’ll skip them here. It is worth noting that these
functions (edit(),de(),and data.entry()) are interactive - that is they require
user input outside of the terminal. There are 2 important things to know about
interactive functions in R:
1. When you invoke an interactive function, R waits for you to be done with
it before R will continue. In RStudio you will see a small red “stop sign” icon
just above the console pane. This means R is waiting for you do do something.
(The first time this happened to me I thought R had frozen and I forced R to
quit and restart).
2. When you use an interactive function any changes you make to data this way
are not recorded in your code - if you make your changes to your data via the
code you write, then saving your code preserves a record of what you have done.
If you are like me, and have ever found yourself looking at a spreadsheet that
you (or someone else) made some time ago, and wondering “what was happening
here?”, you will see the benefit of having everything you do recorded in your
code. It increases the transparency of your analysis. 6.

1.4 Other Useful Functions

Some other useful functions for working with vectors of data are:

5This is not unique to edit(). R will not change something in your environment unless
you explicitly tell it to do so. This is actually a good thing if you think about it.

6Note that interactive functions like this also will cause problems after we learn how to
compile documents in R (Chapter 4).

26 CHAPTER 1. BASICS

Function Description
sd() standard deviation

median() median
max() maximum
min() minimum

range() maximum and minimum
length() number of elements of a vector
cummin() cumulative min (or max cummax())

diff() differences between successive elements of a vector

A couple of additional hints that you’ll find helpful:
1. If you type some function in R and press Return, but R gives you + instead
of the answer, it means you have not completed something - most often this
means a parenthesis has not been closed.
2. Related to 1.: in RStudio when you type “(” the “)” is automatically placed
- this is to help you keep track of your “()”s. Also when your cursor is beside a
“(” the matching “)” is highlighted, and vice-versa.
3. You will occasionally see a semicolon (;) used - this simply allows two
functions to be submitted on one line. This is generally rather rare, since R
functions tend to be longer rather than shorter when doing anything complex.
4. The comment character in R is the hash (#) - anything between # and the
end of the line is treated as a comment and is not evaluated. Adding comments
in your R code is a good idea - it helps you remember where you are and what
you are doing (transparency!)

1.5 A Comment about R Snytax

We can extend the “R as a language” idea introduced in the syllabus in think-
ing about R syntax. The generic form of an sentence is noun+verb. In R that
would be rendered as verb(noun) - in R the function is the action, or the
verb. So we can take a sentence like Bring me the sandwich and render it
in R as something like this: bring(to=me,what=sandwich). Of course some-
times sentences (and R expressions) are more complicated, such as: Bring me
the sandwich that I left on the counter which we might render in R as
something like this: bring(to=me,what=left(what=sandwich,where="on the
counter")) 7.

We can reverse this by starting with an R expression, such as mean (sms
[which] (sms > 0)]) (used above). This would translate as Average the
values of "sms" which are greater than zero. This is kind of a messy
example because the second verb (“is”, in the comparison “are greater than”)
may not be immediately obvious.

7All this talk about sandwiches requires a link to [this cartoon] (https://xkcd.com/149/).

https://xkcd.com/149/

1.6. LOOPS IN R. 27

1.6 Loops in R.

One of the great advantages of R over a point-and-click type analysis tool is that
it is so easy to automate repeated tasks. Because R typically handles vectors
quite nicely, many (most?) loops can be avoided. For example, there is no need
to write a loop to add a two vectors. In addition, code that uses vectorization is
usually much faster than code that uses loops. But sometimes a loop is useful,
so we’ll consider them here.
Loops are initiated with the function for(), with an index a the argument.
The loop is usually enclosed in curly braces “{}”, but if it all fits on one line it
doesn’t need the braces.

for (i in 1:27) {
cat(letters[i])

}

abcdefghijklmnopqrstuvwxyzNA

for (i in 1:10) {
print(paste(i, "squared =", iˆ2))

}

[1] "1 squared = 1"
[1] "2 squared = 4"
[1] "3 squared = 9"
[1] "4 squared = 16"
[1] "5 squared = 25"
[1] "6 squared = 36"
[1] "7 squared = 49"
[1] "8 squared = 64"
[1] "9 squared = 81"
[1] "10 squared = 100"

for (i in sample(x = 1:26, size = 14)) cat(LETTERS[i])

QJNVUTMZLPXBRF

These examples are ridiculously trivial, because I want to emphasize the loop
syntax, which could be rendered as: for (every value in the index) {do
something with that value}.
Notice - these loops could all be avoided by passing vectors rather than single
values to functions - the following code produces (mostly) the same results (not
run here, but you should run it to confirm).

28 CHAPTER 1. BASICS

paste(letters[1:27], collapse = "") # first example,
see what happens if paste() is not used
paste(1:10, "squared =", (1:10)ˆ2) # second example
sample(LETTERS, size = 14) # third example

Also note that letters and LETTERS are built in. Also note (in the following)
that the index does not need to be a number - it can be an object or something
that evaluates to a number. Lastly, note that values aren’t written to the console
when a loop is run unless we specify that they should be using a function such
as cat() or print().

x <- c("Most", "loops", "in", "R", "can", "be", "avoided")
for (i in x) {

cat(paste(i, "!"))
}

Most !loops !in !R !can !be !avoided !

A couple of final thoughts on loops: 1) This section is probably of more interest
to readers who have had some programming experience in the past.

2) The apply() family of functions (See Chapter 10) can be used in place of
many loops. We won’t explore them now.

3) Some useRs are “hardliners” about avoiding loops and would probably
argue that I should not even include this material in chapter 1. I don’t
view loops as inherently bad, but I try to avoid them when I can in the
spirit of “how can I learn to take advantage of more of R’s built in tool
set”. Vectorized R code is usually substantially faster, so there is some
advantage to avoiding loops.

1.7 Exercises.

1) Enter the following data in R and give it a name (P1 for example):
23,45,67,46,57,23,83,59,12,64
a) What is the maximum value? b) What is the minimum value? c) What is
the mean value?

2) Oh no! The next to last (9th) value was mistyped - it should be 42.
a) Change the 12 to 42. b) How does this change the mean? c) How many
values are greater than 40? d) What is the mean of values over 40? Hint: how
do you see the 9th element of the vector P1?

1.7. EXERCISES. 29

3) Using the data from problem 2 (after the 9th value was changed) find:
a) the sum of P1
b) the mean (using the sum and length(P1))
c) the log(base10) of P1 - use log(base=10)
d) the difference between each element of P1 and the mean of P1 (Note: you
should not need a loop for this problem)

4) If we have two vectors, a<-11:20 and b<-c(2,4,6,8) predict (without run-
ning the code) the outcome of the following (Write out your predictions as
comments in your HW. After you make your predictions, you can check yourself
by running the code). Were you correct? a) a*2
b) a[b]
c) b[a]
d) c(a,b)
e) a+b

30 CHAPTER 1. BASICS

Chapter 2

Qualitative Variables

Creating and using categorical variables in R

2.1 Introduction

In the last chapter we saw how we can work with vectors in R. Data that we
work with in R is generally stored as vectors (though these vectors are usually
part of a data frame, which we’ll discuss in the next chapter). Of course there
are several types of data that we might need to work with - minimally we need
qualitative data (categorical data - factors in R-speak) and quantitative data
(continuous or numerical data - numeric in R-speak), but strings (character in
R) are often useful also. Today we’ll consider the first two of these data types,
and learn how to work with them in R.
Since there are different types of data, it is very important to know:
A. What type of data you have (by this I mean what it represents).
As our focus here is R, I won’t dwell on this except to say that it is worth
taking time to be clear about this when designing your data. For example, if
four replicates are labelled “1, 2, 3, 4”, then R is likely to treat replicate is a
numerical variable. If they are labelled “A, B, C, D”, or “I, II, III, IV”, this can
be avoided.
B. What R thinks the data is (or how it is encoded in R).
The most common data types for vectors in R are: "logical","integer","double",
and "character". There are several other types that you may never encounter
and several types that apply to more complex structures that we’ll explore
later.
There are a couple of ways to find out how R is storing data. The function
str() (“structure”) will give you the basic data type. The function summary()

31

32 CHAPTER 2. QUALITATIVE VARIABLES

gives summary statistics for numeric variables, but number of levels for factors.
This works well because it also lets you quickly see if you have miss-coded data
(e.g typos like “IIi” in place of “III”) or extreme outliers.

C. How to ensure that the answers to A. and B. are the same!

2.2 The Function factor().

Qualitative data, or categorical data is stored in R as factors. We can use the
function factor() to coerce (convert) a vector to a factor, as demonstrated
here:

cols <- c("Blue", "Blue", "Red", "Red", "Blue", "Yellow",
"Green")

summary(cols)

Length Class Mode
7 character character

cols[2]

[1] "Blue"

cols <- factor(cols)
cols[2]

[1] Blue
Levels: Blue Green Red Yellow

Notice that this factor was created as a character variable - the elements still
have quotes around them. After we convert it to a factor, even returning one
element (cols[2]) we can see that there are no quotes and we get the levels
reported. The structure (str(cols)) reports that it is factor, and shows us the
numeric representation of it (we’ll discuss this more in a bit). The summary
(summary(cols)) shows us the frequency for (some of) the levels 1. Now that we
have cols as a factor, we can investigate its properties. The function levels()
shows us all the levels for a factor.

1If there were many levels, only the first 5 or 6 would be shown.

2.2. THE FUNCTION FACTOR(). 33

str(cols)

Factor w/ 4 levels "Blue","Green",..: 1 1 3 3 1 4 2

summary(cols)

Blue Green Red Yellow
3 1 2 1

levels(cols)

[1] "Blue" "Green" "Red" "Yellow"

We can use the function table() to see a frequency table for our factor. Note:
We can use table() on character or numeric vectors also - table() will coerce
its argument(s) to factor if possible (though of course it doesn’t store the factor
- objects are only stored if you explicitly call for them to be stored).

table(cols)

cols
Blue Green Red Yellow
3 1 2 1

b <- table(cols)
b[3]

Red
2

b[3] * 4

Red
8

Notice that the frequency table created by table() is itself an R object, meaning
that we can assign it to another name (b in this example), and we can access
parts of it in the normal way, and use it in further calculations. Using functions
to return or store (save) objects is a very common task in R, as you will see,
and many functions return objects.

34 CHAPTER 2. QUALITATIVE VARIABLES

2.3 Visualizing Qualitative Variables.

If we want a graphical summary of a factor, we can make a barplot (barplot()).
However, we need to use table() with barplot(), since barplot() requires
the values it will plot (its height argument) in a numeric form (i.e. a vector or
a matrix; see ?barplot for more detail).

barplot(table(cols))
plot(cols)

Blue Green Red Yellow

0.
0

1.
0

2.
0

3.
0

Blue Green Red Yellow

0.
0

1.
0

2.
0

3.
0

barplot(b/length(cols), col = c("blue", "green", "red",
"yellow"),↪→

ylab = "Proportion")

Blue Green Red Yellow

P
ro

po
rt

io
n

0.
0

0.
1

0.
2

0.
3

0.
4

Note that plot(cols) gives a barplot in the second plot - this is because the
data is categorical. In the third plot we used b (recall that earlier we assigned
table(cols) to b) either way works.

2.3. VISUALIZING QUALITATIVE VARIABLES. 35

barplot(b/length(cols), col = c("blue", "green", "red",
"yellow"),↪→

ylab = "Proportion")
barplot(table(cols)/length(cols), col = levels(cols), ylab =

"Proportion")↪→

Blue Green Red Yellow

P
ro

po
rt

io
n

0.
0

0.
1

0.
2

0.
3

0.
4

Blue Green Red Yellow

P
ro

po
rt

io
n

0.
0

0.
1

0.
2

0.
3

0.
4

The first plot here demonstrates how we can easily add color to plots and that
we can carry out calculations within the call to barplot() (e.g. to calculate
proportions). We can also specify the y-axis label (the argument is ylab). The
second plot demonstrates how we can use the output of levels() to specify
our colors. This only makes sense in a minority of cases, but it is an example
of nesting functions - table(), length(), and levels() are all used to supply
arguments to barplot().

Notice that the col argument to barplot() is optional - barplot
works fine if we don’t specify col, but we have the option to do so
if need be. This is a common feature of R functions - minimal ar-
guments are required, but there are often many optional arguments,
which often have well chosen default values.

We can also convert a factor to a logical vector (by using a logical test) should
we need to for sub-setting:

cols == "Red"

[1] FALSE FALSE TRUE TRUE FALSE FALSE FALSE

We can also create a pie chart quite easily (though see ?pie for why this might
not be a good idea).

36 CHAPTER 2. QUALITATIVE VARIABLES

pie(table(cols))
pie(b, col = c("blue", "green", "red", "yellow"))

Blue

Green

Red

Yellow

Blue

Green

Red

Yellow

Another example, this time with a numerically coded factor.

a <- factor(scan(text = "2 4 3 3 2 1 1 2 3 4 2 3 3 4 1 3 2 1 4
3 2 4"))

scan(text='some text string with spaces separating
value')
table(a)

a
1 2 3 4
4 6 7 5

levels(a) <- c("<14", "15-24", "25-34", ">35")
table(a)

a
<14 15-24 25-34 >35
4 6 7 5

2.4. HOW FACTORS ARE STORED IN R 37

barplot(table(a))

<14 15−24 25−34 >35

0
1

2
3

4
5

6
7

First notice that we introduce the function scan() here - when entering a longer
list like this it may be easier than using c(), as commas don’t need to be entered.
Second note that we can use the function levels() to set levels as well as to
return them (a number of other R functions display this dual utility as well).
For a longer factor variable, it might be faster to enter it this way than by
repeatedly entering all the factor levels 2 .

2.4 How Factors are Stored in R

R stores factors as a list of levels and an integer vector representing the level
of each element of the factor. So our factor a, with values 1,1,4,5 has three
levels: 1 4 5.

a <- c(1, 1, 4, 5)
str(a)

num [1:4] 1 1 4 5

2In practice I enter rather little data when using R for analysis - mostly I import the data,
as we’ll see later.

38 CHAPTER 2. QUALITATIVE VARIABLES

(a <- as.factor(a))

[1] 1 1 4 5
Levels: 1 4 5

str(a)

Factor w/ 3 levels "1","4","5": 1 1 2 3

levels(a)

[1] "1" "4" "5"

Notice that str(a) shows that the original values have been replaced by the
level numbers, which are 1,2,3. This can create an unwelcome surprise if you
are trying to use values from a factor variable in a calculation! For this reason,
it is probably best to avoid using the integer values from a factor in calculations.
Note that while factors levels are stored as a vector of numbers, it does not make
sense to treat these as numbers - in this example the level “4” is represented by
the value “2”. If our levels were “blue”,“red”,“green”, it clearly makes no sense
to assume that because “blue” is level 1, and “green” is level 2 that “green” =
twice “blue”.
Note that in the third line we put parentheses around the assignment - this
is equivalent to a<-as.factor(a);a - it both carries out the assignment and
shows us the new value of a. This is occasionally useful. The function levels()
returns the levels for a factor (what do you think it does for a non-factor vari-
able?)
We already saw how we can use factor() and as.factor() will convert char-
acter or numeric data to factor data, and as.numeric() will (sort of) do the
opposite.

as.numeric(a)

[1] 1 1 2 3

As you can see in this case we don’t get the original values, we get the integer
representation. We can also see this in the output from str(a). If necessary,
this can be solved by first converting to character and then to numeric 3 -
as.numeric(as.character(a)) returns: 1, 1, 4, 5.

3Note that this is not the most computationally efficient way to accomplish this, but is
the easiest to remember. The recommended approach is as.numeric(levels(a)[a]), which
showcases the power of the [] in R.

2.5. CHANGING FACTOR LEVELS 39

as.numeric(as.character(a))

[1] 1 1 4 5

Since factor levels are characters, they can be a mix of alphabetic and numeric
characters, but that will clearly cause problems if we want to coerce the factor
to a numeric vector.

(b <- c("-.1", " 2.7 ", "B"))

[1] "-.1" " 2.7 " "B"

str(b)

chr [1:3] "-.1" " 2.7 " "B"

as.numeric(b)

Warning: NAs introduced by coercion

[1] -0.1 2.7 NA

Here we entered the values with quotes, which created a character variable,
(as shown by the chr returned by str()). When we convert the vector to
numeric, the non-numeric value (“B”), can’t be coerced to a number, so it is
replaced by NA, thus the warning NAs introduced by coercion. This warning
will occasionally show up when a function coerces one of its arguments.

2.5 Changing Factor Levels

Occasionally we need to change the levels of a factor - either to collapse groups
together or to correct typos in the data.

cols <- factor(c("Blue", "Blue", "Red", "Red", "Bleu", "Yellow",
"Green"))

levels(cols)

[1] "Bleu" "Blue" "Green" "Red" "Yellow"

40 CHAPTER 2. QUALITATIVE VARIABLES

Here we have mistyped “Blue” as “Bleu” (I do this kind of thing all the time).
We can use the function levels() to set levels as well as to query them. The key
is that since there are currently 5 levels, we must specify 5 levels that correspond
to the 5 current levels, but we don’t have to specify unique levels.

levels(cols) <- c("B", "B", "G", "R", "Y")
levels(cols)

[1] "B" "G" "R" "Y"

Now we have only four levels - by assigning “B” to both “Blue” and “Bleu” we
collapsed them together. This is not reversible - if we wanted to get “Bleu”
back, we’d have to reload the data. This is where making a copy of the vector
before you start tweaking it may be a good idea (though if you are writing all
your code in an R script, it is quite easy to get back to where you started - just
run all the commands again).
Note that the new levels can be the same as the old levels - in the example
above I avoided that just for clarity.

cols <- factor(c("Blue", "Blue", "Red", "Red", "Bleu", "Yellow",
"Green"))

levels(cols) <- c("Blue", "Blue", "Green", "Red", "Yellow")
levels(cols)

[1] "Blue" "Green" "Red" "Yellow"

In fact we can supply the same levels in a different order, though that probably
doesn’t make much sense.

cols <- factor(c("Blue", "Blue", "Red", "Red", "Blue", "Yellow",
"Green"))

levels(cols)

[1] "Blue" "Green" "Red" "Yellow"

levels(cols) <- c("Yellow", "Blue", "Green", "Red")
levels(cols)

[1] "Yellow" "Blue" "Green" "Red"

Since there are four levels, we must supply a vector of four levels, but they don’t
need to all be different:

2.5. CHANGING FACTOR LEVELS 41

Note: We could also use the function replace() to change factor
levels, but to do this we first have to convert the factor to character
using as.character(), so this method is not generally as useful.

It is worth noting that once a level is created for a factor, the level persists even
if the corresponding data is removed.

cols

[1] Yellow Yellow Green Green Yellow Red Blue
Levels: Yellow Blue Green Red

cols[-6]

[1] Yellow Yellow Green Green Yellow Blue
Levels: Yellow Blue Green Red

Notice the level Red is still present, even though there are no values with that
level. This is occasionally annoying. The function droplevels() can be used to
drop unused factor levels you can check this by running droplevels(cols[-6]).

Occasionally we want to impose our own order on a factor rather than accept
the default (alphanumeric) order given by R. For example, a factor with lev-
els “Low”, “Medium” and “High” would be default ordered as “High”, “Low”,
“Medium”, which doesn’t make sense. We can use the use the levels argument
of factor() to set the orders as we’d like them to be.

x <- factor(c("L", "M", "H"))
y <- factor(x, levels = c("L", "M", "H"))
x

[1] L M H
Levels: H L M

y

[1] L M H
Levels: L M H

Notice here that the content of x and y are the same (“L”, “M”, “H”), when
returned by R. However, if you run str(x);str(y), you will see that the un-
derlying encoding is different because the order of levels is different.

42 CHAPTER 2. QUALITATIVE VARIABLES

In some cases, your interest in the order of factor levels may be for convenience,
and not based on an intrinsic order (e.g. ordering categories based on total
frequency, such as might be utilized in a bar plot, or ordering universities on
the basis of the number of R users). The method presented above is appropriate
for these situations.

In other cases, there is an intrinsic order to the levels (e.g. “Low”, “Med”,
“High”; “Never”, “Sometimes”, “Always”). In such instances it may be useful
to create an ordered factor.

z <- factor(x, levels = c("L", "M", "H"), ordered = TRUE)
z

[1] L M H
Levels: L < M < H

Notice that the levels are listed from lowest to highest, and are shown with the
“<” indicating the order. We can also see this when we call str() on an ordered
factor. Also notice that when we create the ordered factor z we begin with x
that already has the levels "L","M","H". If x had other levels we’d need to set
the correct levels first via levels(), or use the argument labels for factor().

str(y)

Factor w/ 3 levels "L","M","H": 1 2 3

str(z)

Ord.factor w/ 3 levels "L"<"M"<"H": 1 2 3

The main advantage of an ordered factor is the ability to perform logical tests
that depend on ordering on the factor.

y > "L"

Warning in Ops.factor(y, "L"): '>' not meaningful for
factors

[1] NA NA NA

2.6. HYPOTHESIS TESTING FOR FACTORS 43

z > "L"

[1] FALSE TRUE TRUE

sum(z <= "M") # '<=' is 'less than or equal to'

[1] 2

2.6 Hypothesis Testing for Factors

We may want to test hypotheses about a qualitative variable. For example, if
we roll a die 50 times and get “6” 12 times how likely is it that the die is fair?
(This really is a factor - it just has numeric levels.)

We can use the proportion test in R (prop.test()) to compare an observed
frequency against a hypothesized frequency and calculate a p-value for the dif-
ference. Here our observed frequency is 12 out of 50, and the theoretical prob-
ability is 1/6. Our alternative hypothesis is that the probability is greater than
1/6.

prop.test(x = 12, n = 50, p = 1/6, alt = "greater")

#
1-sample proportions test with continuity
correction
#
data: 12 out of 50, null probability 1/6
X-squared = 1.444, df = 1, p-value = 0.1147
alternative hypothesis: true p is greater than 0.1666667
95 percent confidence interval:
0.1475106 1.0000000
sample estimates:
p
0.24

The p-value here is 0.115, so we don’t have very strong evidence of an unfair
die.

44 CHAPTER 2. QUALITATIVE VARIABLES

EXTRA: Simulating a hypothesis test for a qualitative vari-
able

Another way to approach this question is to simulate the problem in R. The
function sample() will randomly choose values, so sample(1:6) would be like
rolling a fair die, and sample(1:6,size=50,replace=TRUE) like rolling the die
50 times. Adding the logical test ==6 asks how many 6’s come up, and calling
sum() on the logical test adds up the number of TRUEs (recall from Chapter 1
that logical values can be interpreted as 0 or 1).

sample(x = 1:6, size = 50, replace = TRUE) # rolling a die 50
times↪→

[1] 1 1 2 1 6 2 2 5 4 2 1 4 6 1 3 3 6 1 6 6 2 1 1 6 2 2
[27] 5 3 1 4 3 3 5 1 5 1 5 3 2 3 5 6 6 6 2 5 5 5 4 3

sum(sample(1:6, 50, TRUE) == 6) # how many times is it 6?

[1] 9

You can easily use the up arrow in the console to repeat this - you’ll see
that the number of 6’s varies. If we repeated this 100 times we could see
how frequent a value of 12 or greater is. To do this we’ll use a loop. First
we’ll create a vector of NAs to store the data, then we’ll use a loop to run
sum(sample(1:6,50,TRUE)==6) 100 times.

die <- rep(NA, 100) # vector to store results
for (i in 1:100) {

die[i] <- sum(sample(1:6, 50, TRUE) == 6)
}
table(die)

die
3 4 5 6 7 8 9 10 11 12 13 14
3 3 6 10 17 18 11 18 5 6 2 1

sum(die >= 12)

[1] 9

2.7. EXERCISES. 45

So a value of 12 or greater comes up 9% of the time, which is a bit different
from the p-value we got from prop.test(). To get a more stable p-value we
need to try this 1000 time rather than a hundred (go ahead and try it if you
like) We don’t have strong enough evidence to conclude that the die is not fair.
This is much faster than rolling a die 5000 times and recording the results!

Note: here we created a vector to store the results before running
the loop. This is recommended, as it is more efficient, but you can
“grow” a vector from inside a loop.

2.7 Exercises.

1) The function rep() makes repeated series - for example try rep(4,times=5)
and rep(c(1,2),each=3). Use rep() to enter the sequence 1 1 1 1
2 2 2 2 3 3 3 3 repeated 3 times. Now convert it to a factor with
the levels “Low”,“Medium”, and “High”. Can you change the levels to
“Never”,“Rarely”,“Sometimes”?

2) Convert the factor from Problem 1 (the final part, with levels
“Never”,“Rarely”, and “Sometimes”) into a character vector, and save it
(assign it a name). Can you convert the character vector to a numeric vector?

3) Earlier we used the factor variable a (created by a<-factor(scan(text="2 4
3 3 2 1 1 2 3 4 2 3 3 4 1 3 2 1 4 3 2 4"))). Convert a into an ordered
factor with levels "Sm","Med","Lg","X-Lg" (with 1 for “Sm”). How many
values are equal to or larger than “Lg”?

4) We can use the output of table() with barplot() to view the frequency
of levels in a factor. Extending our discussion of rolling die, we can use
this to view the likelihood of rolling any particular value on one die using
barplot(table(sample(x=1:6,size=1000,replace=TRUE))). How does this
change if we add the rolls of 2 dice together - i.e. what is the distribution of
the sum of two dice? (Hint: recall that vectors are added in an element-wise
fashion, and that sample() returns a vector).

Extra What happens if the two dice have different numbers of sides? You
should be able to modify the code you used for #4 to simulate what happens
with (E.G.) a 4 sided and a 10 sided dice.

46 CHAPTER 2. QUALITATIVE VARIABLES

Chapter 3

Quantitative Variables

Creating and using continuous variables in R

3.1 Introduction

In the last chapter, we began working with qualitative data. Now we’ll look at
how to handle quantitative (continuous, or numerical) data.

3.2 Working with Numeric Data

In the first chapter we saw some functions that can be used with numeric vectors
- here we’ll demonstrate a bit more. We’ll begin with some data that represents
the size of a group of mp3 files (in MB), and get some summary statistics:

mp3 <- scan(text = "5.3 3.6 5.5 4.7 6.7 4.3 4.3 8.9 5.1 5.8 4.4")
mean(mp3)

[1] 5.327273

var(mp3)

[1] 2.130182

sd(mp3)

47

48 CHAPTER 3. QUANTITATIVE VARIABLES

[1] 1.459514

median(mp3)

[1] 5.1

summary(mp3)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.600 4.350 5.100 5.327 5.650 8.900

These functions mostly do what we’d expect. The function fivenum() gives
similar output to summary(), but differ slightly, since fivenum() returns the
upper and lower hinges 1, while summary() returns the 1st and 3rd quartiles,
and these can differ slightly depending on the number of data points.

quantile(mp3, c(0.25, 0.75))

25% 75%
4.35 5.65

quantile(mp3, c(0.18, 0.36, 0.54, 0.72, 0.9))

18% 36% 54% 72% 90%
4.30 4.58 5.18 5.56 6.70

Notice that the function quantile() can return any desired quantile.

3.3 Hypothesis Testing

As we did for the qualitative data we can test hypotheses about quantitative
data. For example, if we thought the mean was 4.5, we could test if the data
support this by making a t-test. > Recall that t is the difference between
observed and hypothesized means in units of the standard error, and standard
error of the mean is standard deviation divided by the square root of n, and
note that we can use pt() to calculate probabilities for a t-distribution. See
“?Distributions” for more distributions.

1The “upper hinge” is the median of the data points above the median. Depending on the
number of data points, this may differ from the 3rd quartile.

3.4. RESISTANT MEASURES OF CENTER AND SPREAD 49

t <- (mean(mp3) - 4.5)/(sd(mp3)/sqrt(length(mp3)))
pt(t, df = length(mp3) - 1, lower.tail = FALSE) * 2

[1] 0.08953719

*2 for 2 sided test

Recall that length(mp3)ˆ0.5 is the square root of n; we could also use
sqrt(length(mp3)).

Of course, R has a built in t-test function that saves us the work:

t.test(mp3, mu = 4.5)

#
One Sample t-test
#
data: mp3
t = 1.8799, df = 10, p-value = 0.08954
alternative hypothesis: true mean is not equal to 4.5
95 percent confidence interval:
4.346758 6.307788
sample estimates:
mean of x
5.327273

We provide the null value of the mean with the argument mu.

3.4 Resistant measures of center and spread

Since the mean and standard deviation can be quite sensitive to outliers, it is
occasionally useful to consider some resistant measures of center and spread,
so-called because they resist the influence of outliers. We’ll add an outlier to
our mp3 data and experiment.

mp3[8] <- 10.8
mean(mp3)

[1] 5.5

50 CHAPTER 3. QUANTITATIVE VARIABLES

median(mp3)

[1] 5.1

mean(mp3, trim = 0.1)

[1] 5.122222

The median is substantially lower than the mean, but trimmed mean 2 is much
nearer the median. Trimming more of the data will get still closer to the median.

For resistant measures of spread, one candidate is the “Interquartile range”
or IQR, defined as the difference between the 3rd and 1st quartiles. Another
candidate is the “median absolute deviation” or MAD, defined as the median of
the absolute differences from the median, scaled by a constant 3. If that sounds
complex, it is simple in R, since R works easily with vectors.

IQR(mp3)

[1] 1.3

median(abs(mp3 - median(mp3))) * 1.4826

[1] 1.03782

mad(mp3)

[1] 1.03782

Of course, there is already a function for MAD, so we don’t need to do it “by
hand”.

2The trimmed mean is taken after removing (“trimming”) the upper and lower ends of the
data, in this case we specified 10% via the trim=0.1 argument.

3The default value of the constant is 1.4826, as this gives a value comparable to standard
deviation for normally distributed data.

3.5. VISUALIZING QUANTITATIVE DATA 51

3.5 Visualizing Quantitative Data

One of the things we often want to do with qualitative data is “have a look”.
There are several ways to do this in R, and we’ll review them here. The first
and most common is the histogram. First we’ll add another album’s mp3 file
sizes to our data mp3 - note that c() can be used to combine vectors also.

mp3[8] <- 8.9
mp3 <- c(mp3, scan(text = "4.9 5 4.9 5.4 6.2 5.6 5.1 5.8 5.5 6.7

7"))↪→

par(mfrow = c(1, 2)) # split the plot
hist(mp3)
hist(mp3, prob = TRUE, col = "grey")

Histogram of mp3

mp3

F
re

qu
en

cy

3 4 5 6 7 8 9

0
2

4
6

8

Histogram of mp3

mp3

D
en

si
ty

3 4 5 6 7 8 9

0.
0

0.
1

0.
2

0.
3

0.
4

We have 2 versions of the histogram here - in the first, the y-axis is in units
of frequency, so the scale changes for differing n, while the second is in units
of probability, so distributions with differing n can be compared. Another use-
ful visualization is the kernel density estimate (KDE), or density estimate,
which approximates a probability density function.

par(mfrow = c(1, 2)) # split the plot
hist(mp3)
lines(density(mp3), col = "red")
hist(mp3, probability = TRUE, col = "grey")
lines(density(mp3), col = "red")

52 CHAPTER 3. QUANTITATIVE VARIABLES

Histogram of mp3

mp3

F
re

qu
en

cy

3 4 5 6 7 8 9

0
2

4
6

8

Histogram of mp3

mp3

D
en

si
ty

3 4 5 6 7 8 9

0.
0

0.
1

0.
2

0.
3

0.
4

Note that the KDE approximates the histogram (and should have the same
area), but for over-plotting on the histogram, the histogram must be in units
of probability. In a case like this where our density function is off the scale,
we might need to force the histogram to use a longer y-axis, which we can do
using the ylim argument to specify the y-axis limits. (We’ll use this optional
argument with many plotting functions)

hist(mp3, probability = TRUE, col = "grey", ylim = c(0, 0.6))
lines(density(mp3), col = "red")

3.5. VISUALIZING QUANTITATIVE DATA 53

Histogram of mp3

mp3

D
en

si
ty

3 4 5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

Here’s another example, using rnorm()4 to generate some random data from
the normal distribution.

par(mfrow = c(1, 2)) # split the plot
a <- rnorm(n = 40, mean = 7, sd = 2)
hist(a, prob = T, col = "grey")
hist(a, prob = T, col = "grey", breaks = seq(0.5, 14, 1.5))

4The r in rnorm() means “random”; runif() generates some uniformly distributed random
data, and many others are included - see ?Distributions

54 CHAPTER 3. QUANTITATIVE VARIABLES

Histogram of a

a

D
en

si
ty

4 6 8 10

0.
00

0.
10

0.
20

0.
30

Histogram of a

a

D
en

si
ty

0 4 8 12

0.
00

0.
10

0.
20

Notice that these two histograms represent the same data - this is one of the
weaknesses of histograms: the idea they give us about the data depends on
the bins used. This example shows how the breaks argument can be used
to specify where the “bins” are in the histogram. Here we used the function
seq() to create a sequence with lower and upper bounds and step size (0.5,
14, and 1.5 in our example). Breaks can also be an arbitrary sequence - try
breaks=c(0,4,5,5.5,6,6.5,7,7.5,8.5,14)) and see what happens!

Note:

About arguments: Notice that here the argument probability=TRUE has been
abbreviated as prob=T. R is happy to accept unambiguous abbreviations for
arguments. R is also happy to accept un-named arguments in the order they
are entered - we did this in our call to seq() in the last example - we could
have specified seq(from=0.5,to=14.0,by=1.5). For the simpler functions that
I use frequently I don’t usually spell out the arguments, though here I will tend
to spell them out more frequently.

Boxplots are another useful visualization of quantitative data which show the
median, lower and upper “hinges” and the upper and lower whiskers. They
can also be “notched” to show a confidence interval about the median. Values
beyond the whiskers are possible outliers.

par(mfrow = c(1, 2))
boxplot(mp3)
boxplot(mp3, notch = TRUE, col = "cornsilk")

3.5. VISUALIZING QUANTITATIVE DATA 55

4
5

6
7

8
9

4
5

6
7

8
9

The value of 8.9 seems rather suspicious doesn’t it?

We can visualize the “raw” data using plot(). Since plot() requires arguments
for both x and y, but we are only providing x, the indices of x will be used for
x, and the values of x for y.

plot(mp3)

5 10 15 20

4
6

8

Index

m
p3

56 CHAPTER 3. QUANTITATIVE VARIABLES

This method doesn’t give us summary values like a boxplot does, but it has the
advantage of letting us look for structure in the data (though it won’t work for
very large datasets). For example, here it is evident that the first half of the
data set is more variable than the second half. Whether this is important or
not depends on nature of the data.

Two other tools that are sometimes useful are the stripchart and the stem
and leaf plot. The “stripchart” is a sort of “one-dimensional scatterplot”. The
argument method tells R how to display values that would over plot.

par(mfrow = c(3, 1))
stripchart(mp3)
stripchart(mp3, method = "jitter")
stripchart(mp3, method = "stack")

4 5 6 7 8 9

4 5 6 7 8 9

4 5 6 7 8 9

A final trick is the stem and leaf plot, which was originally developed because
it could quickly be created with pencil and paper. While it looks simple and a
bit crude, it has the advantages that it preserves the original data - from a stem
and leaf plot you can reconstruct the actual values in the data, which you can’t
do with most of the other visualization tools we’ve looked at here.

stem(mp3)

#
The decimal point is at the |
#

3.6. CONVERTING QUANTITATIVE DATA TO QUALITATIVE 57

2 | 6
4 | 3347990113455688
6 | 2770
8 | 9

stem(mp3, scale = 2)

#
The decimal point is at the |
#
3 | 6
4 | 334799
5 | 0113455688
6 | 277
7 | 0
8 | 9

The stem and leaf chart shows that the lowest value is 3.6, and occurs once, while
the maximum value is 8.9, which may be an outlier. Stem and leaf plots are
useful for exploratory data analysis (EDA), but I’ve rarely seen them published;
histograms are much more commonly used.

3.6 Converting Quantitative Data to Qualita-
tive

Sometimes we need to take a quantitative variable and “simplify” it by reducing
it to categories. The function cut() can do this.

m.r <- cut(mp3, breaks = c(3:9)) # specify the breaks
m.r

[1] (5,6] (3,4] (5,6] (4,5] (6,7] (4,5] (4,5] (8,9]
[9] (5,6] (5,6] (4,5] (4,5] (4,5] (4,5] (5,6] (6,7]
[17] (5,6] (5,6] (5,6] (5,6] (6,7] (6,7]
Levels: (3,4] (4,5] (5,6] (6,7] (7,8] (8,9]

m.r[which(mp3 == 5)] # values of 5.0 coded as (4,5]

[1] (4,5]
Levels: (3,4] (4,5] (5,6] (6,7] (7,8] (8,9]

58 CHAPTER 3. QUANTITATIVE VARIABLES

Note non-matching brackets here: (4,5] - this means “greater than 4 and less
than or equal to 5”, so 4.0 is not included, but 5.0 is included in the inter-
val (4,5]. We can demonstrate that this is so: m.r[which(mid.rib==5.0)]
returns (4,5].

We can now treat the factor m.r like any other factor variable, and assign other
names to the levels as we see fit.

table(m.r)

m.r
(3,4] (4,5] (5,6] (6,7] (7,8] (8,9]
1 7 9 4 0 1

levels(m.r)

[1] "(3,4]" "(4,5]" "(5,6]" "(6,7]" "(7,8]" "(8,9]"

levels(m.r) <- c("tiny", "small", "medium", "med-large", "large",
"huge")

table(m.r)

m.r
tiny small medium med-large large
1 7 9 4 0
huge
1

plot(m.r)

3.7. FITTING AND MODELING DISTRIBUTIONS 59

tiny small med−large huge

0
2

4
6

8

Note that we could use any grouping we want to for breaks, just as we saw
with hist(). Finally notice that in this case the function plot() creates a
barplot. plot() is what is known as a generic function, meaning that what it
does depends on the type of input it is given. For a qualitative variable it will
return a barplot. As we progress, we’ll see more kinds of output from plot().
The use of generic functions in R reduces the number of commands one needs
to learn.

3.7 Fitting and Modeling Distributions

t-distribution can be examined with a group of functions: dx(), px(), qx(),
and rx() giving (respectively) the density, probabilities, quantiles, and random
samples from the x distribution; arguments include parameters specific to the
distributions. Most common distributions are included, see ?Distributions
for a full listing.

We’ll demonstrate some of these functions for the exponential distribution. For
example, what would be the probability of value of 3 or more from an exponential
distribution with a rate parameter of 1?

pexp(q = 3, rate = 1, lower.tail = FALSE)

[1] 0.04978707

The p-value is pretty close to 0.05, so about 1 of 20 random values from this

60 CHAPTER 3. QUANTITATIVE VARIABLES

distribution would be greater than 3. Let’s generate 100 values and see how
many are greater than or equal to 3.

x.exp <- rexp(n = 100, rate = 1)
sum(x.exp >= 3)

[1] 2

Fairly close to 4.97, and a larger sample size would get even closer:

sum(rexp(n = 1e+05, rate = 1) >= 3)/1000

[1] 5.045

Let’s look at how we’d investigate the fit of a distribution. Imagine we have a
sample of 100 values, and we think they come from an exponential distribution
with a rate of 1.

x.exp <- rexp(n = 100, rate = 0.7)
hist(x.exp, prob = TRUE, ylim = c(0, 0.8))
lines(density(x.exp), lty = 2)
lines(density(rexp(10000, rate = 1)), col = "red")
qqplot(x = rexp(10000, rate = 1), y = x.exp, main = "QQ-plot;

Exponential")↪→

abline(a = 0, b = 1)
plot(ecdf(x.exp), pch = 21)

Histogram of x.exp

x.exp

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

0 2 4 6 8

0
2

4
6

8

QQ−plot; Exponential

rexp(10000, rate = 1)

x.
ex

p

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(x.exp)

x

F
n(

x)

The first two plots here suggest that the distribution isn’t what we hypothesize
- rate=1 - (of course in this example we know the rate is not 1, our code that

3.8. EXERCISES. 61

generates it shows the value is 0.7). For more ideas on modeling distributions
in R see [Fitting Distributions with R] (http://cran.r-project.org/doc/contrib/
Ricci-distributions-en.pdf)

3.8 Exercises.

1) The R function rnorm(n,mean,sd) generates random numbers from a normal
distribution. Use rnorm(100) to generate 100 values and make a histogram.
Repeat two or three times. Are the histograms the same?

2) Make a histogram from the following data, and add a density estimate line
to it. (use scan() to enter the data). Try changing the bandwidth parameter
for the density estimate (use the argument “adj” for density(); 1 is the default,
2 means double the bandwidth). How does this change the density estimate?
26 30 54 25 70 52 51 26 67 18 21 29 17 12 18 35 30 36 36 21 24 18 10 43 28 15
26 27 Note: If you are submitting this HW for class in a .txt file, you needn’t
include the plot, just include a brief description of how changing the bandwidth
parameter for density() alters the shape of the curve. Note that the bandwidth
argument here can be a string that matches on of several methods for bandwidth
calculation or a numeric value for the bandwidth.

3) Using the data above compare: a)the mean and median and, b) the standard
deviation, IQR and the MAD.

4) Use the function boxplot() to find possible outliers in the data from problem
2 (outliers shown as individual points; you don’t need to show the boxplot, but
you need to show the values that are possible outliers). Compare: a) the mean
and median of the data with and without the outliers and b) the standard
deviation and MAD for the data with and without the outliers.

http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf
http://cran.r-project.org/doc/contrib/Ricci-distributions-en.pdf

62 CHAPTER 3. QUANTITATIVE VARIABLES

Chapter 4

Documenting Your Work

How not to forget what you were doing

4.1 Introduction

One of the big challenges in using any analytical software tool is how to keep
track of what you are doing, or how to document your work. In the real world,
where the time needed to complete complex (or even supposedly “simple”)
projects often comes in short chunks with many interruptions, what this re-
ally means is not just documenting your work, but documenting your thought
process about your work.

Before I used R I did all my data manipulation, etc in spreadsheets, and dumped
data into stats software only for things like fitting models. I learned to do a
wide range of things in spreadsheets (though often in rather kludgy ways!). But
I often had the experience of coming back to an old (in months or even days)
spreadsheet and being rather bewildered because I couldn’t figure out what in
the world I had been doing with it. 1

When I started using R, this habit carried over - I just pulled data into R for
complicated stuff, and did everything else in spreadsheets. I copied and pasted
my R code and output and figures into a word processor document to keep
running notes on what I was doing. I discovered (and you may also know) this
pattern leads to a lot of repeated copy/paste activity - for example when you
discover that you have some mis-entered data and have to rerun the analysis,
you have to repeat the copy/paste for all output and graphs. This pattern of
working is also a headache!

1Spreadsheets are hugely powerful; the difficulty in annotating and narrating the logic
behind spreadsheets is probably their greatest shortcoming.

63

64 CHAPTER 4. DOCUMENTING YOUR WORK

To fully document statistical analysis, we need to have 4 components:
1. the exact method used to do the analysis (the R code)
2. the results of the analysis (statistical tables, etc)
3. any figures needed to illustrate the analysis
4. the appropriate commentary and narrative

There have been various tools that have attempted to simplify this process.
Here we’ll introduce the compile notebook functionality in R Studio. 2 This
does everything on this list and is simple enough that it is perfect for homework
assignments. In Chapter 14 we’ll explore some more advanced tools.

4.2 Background

The “compile notebook” function in R studio takes a .R file and creates an
HTML file that includes any comments and code, interspersed with the console
output from the code and any figures created by the code. If you go to the File
menu and choose New File>R script you will open a .R file in your editor.
NOTE: A .R file is just a .txt file with .R as the file extension, so you could edit
it with any text editor.

If you have never used LaTeX or a similar writing tool or written html, this may
seem odd to you. When using most word processors, you see what the output
will look like “in real time”. Compiled documents (like those we’ll explore here)
can be though of as containing the instructions for making the final document.

There are four important things to remember 3 when working with .R files that
will be compiled:

1) For successful compilation, a .R file can contain only valid R code and
comments.

2) Compilation of a .R file into a report occurs by running all the code in
the file in a blank environment. If you run the code from the editor, all
data/objects the code creates will appear in your “Environment” tab in
the upper-right quadrant of the RStudio window. Compilation occurs in
a clean environment.

3) The .R file must contain all the code needed to create or load the data,
or to create any objects used in the analysis. This follows from #1. (This
includes loading any packages needed - more on this later).

2The RStudio notebook function is built on the function render() in the package
rmarkdown, so if you don’t use RStudio you can use rmarkdown::render(), as introduced
below. The package rmarkdown was created based on the package knitr, which created by
Yihui Xie while he was a PhD student in statistics - he now works for RStudio.

3Arguably #2 and #3 are just two sides of the same coin, and so there are only three
things.

4.3. AN EXAMPLE 65

4) Compilation of a .R file will create errors if the code in the .R file includes
any interactive functions (E.G. edit(), identify(), file.choose()).

The vast majority of compilation problems I’ve encountered trace back to these
four issues.

4.3 An Example

Open an R script file. Copy the following into it:

#'## A test of document compilation
#' Some important text describing what this data is about.
#' Since this line begins with a "#'" it will be rendered as text.
#' See how nice it looks!
This is a comment.
Since it only begins with a "#" it will be rendered as a comment.
a<-1:25
b<-sort(rnorm(25)) # by default mean=0 and sd=1
mean(b)
sd(b)
#' Note mean and sd match the default values of sd=1 and mean=0
plot(a,b,type="l",col="red",lwd=2)
#' Figures are included. No need to copy and paste!

We can compile this R script file very easily. First we should save it. Let’s
call it “Ch4Demo1.R”. You might as well save it in “Code Files” folder in your
“Essential R” folder.

As we noted above, a .R file contains 2 kinds of content only - R code and
comments (preceded by #). If you look closely you will see that there are also
two sub-types of comments4 - those that begin with "#" and those that begin
with "#'". Comments that begin with #' will be end up formatted as text, not
as code comments.

Here is where RStudio makes this super easy. You can just go to the File
menu and choose Compile Report or you can just click the “compile notebook”
button that appears at the top of the editor pane when a .R file is active:

When you click this button, it will ask you what output format you want. You
can choose “Html”, “MSWord”, and “Pdf” (to use pdf you will need to install
LaTeX on your computer, check which version is appropriate for your OS). For
this class, HTML output is preferred.

4Actually, there are a few other kinds of comments that are possible: those that begin with
#'## will be formatted as headings, with one trailing # (i.e. #'#) as a top level heading and 6
trailing # as a 6th level heading. Also, #'------ will create a horizontal line.

66 CHAPTER 4. DOCUMENTING YOUR WORK

Figure 4.1: NotebookButton

If you click the button shown above and get a message that you need to install
or update the packages rmarkdown and/or rprojroot, it should be no problem
5. You can go to the “Packages” tab in the upper right pane in RStudio and
click “Install” and the type the names of the packages. Alternately just type (in
the console) install.packages ("package-name-here")6. If this is the first
time you have installed packages, you may be prompted to select a mirror - just
choose one nearer your location. R should work for a minute and you should
get a preview of your html file. Easy! You can also change this anytime under
Tools>Global Options (Mac: RStudio>Preferences) and choose the “packages”
tab.

4.4 Compilation from the console

Compilation can all be done from the console also if you need to, and there
are several reasons that might be useful: 1) You are not using RStudio, 2) You
want to have access to the figures as stand alone files (E.G. to insert into other
documents), 3) You are scripting the production of multiple reports.

Assuming the file is saved as “Ch4Demo1.R” in the “Code Files” folder in your
“Essential R” folder, make sure that the “Code Files” folder is set as your
working directory7. Now we can load rmarkdown and compile the document.

5As long as you have an internet connection. If you don’t have an internet connec-
tion, it is harder. You have to find some way to get the source version of the package
file onto your machine, and you can then install and compile the package from source as fol-
lows: install.packages(repos=NULL,type="source",pkgs=file.choose()), and point your
file browser to the package file. If the file has a .tar.gz extension, use type="source", if the
extension is .zip use type="win.binary".

6You should only have to install a package once on a given machine - this downloads it
and copies it into the R library folder. Packages need to be loaded in every R session where
they need to be used. When you compile using the RStudio “notebook” button, you don’t
need to load it - that happens automagically.

7You can set this from the console using setwd("path/to/directory") or from the menu us-
ing Session>Set Working Directory>To Source File Location - the latter will set the work-
ing directory to the folder that contains the active document in the editor.

4.5. HELP! I’M GETTING AN ERROR! 67

rmarkdown::render("Ch4Demo1.R") # compile your document to Rmd

Notice: 1) No preview in RStudio 2) The folder the .R file was saved in now
contains an .html file and an .md file with the same name as the .R file. 3)
There is also a folder called Figure in the enclosing folder.

If you don’t specify the output= argument here you will still get an .html file
but the extension will be .txt.

NOTE: If you choose to call render() from the console, you should not
include the call to render() in you .R file If it is in your .R file when
you call render() on the file it will recursively call render() again, which you
don’t want. In my experience it is much simpler to use the “compile notebook”
button, but I include the command line so you aren’t completely reliant on
RStudio. (If you prefer to call rmarkdown from the console and don’t want to
have to remember the command, you can include it in your .R file but comment
it out so it won’t run recursively - just don’t select the ‘#’ when you select that
command and send it to the console to compile).

4.5 Help! I’m Getting an Error!

The most common source of errors using rmarkdown are actually not errors in
rmarkdown, but errors in the .R file being compiled - see the “4 important
things to remember” above. Unfortunately, the error messages generated from
compiling a file may be more cryptic. Here we’ll demonstrate a common problem
- a missing variable. In your “Ch4Demo1.R” file, comment out the line a<-1:25
(put “#” in front of it). Now let’s remove a in the workspace by typing (in the
console):

rm(a)

Now if you run the code in “Ch4Demo1.R” line by line, you will get an obvious
error when you get to plot(a,b) - there is no a, and R complains:

Error in plot(a, b, type = "l", col = "red", lwd = 2) :
object 'a' not found

As you might expect, you will get an error when you try to compile the file
with the line a<-1:25 commented out. When you knit the file by clicking the
“notebook” icon in RStudio, the error message you get in the “R Markdown”
console is a bit different:

68 CHAPTER 4. DOCUMENTING YOUR WORK

Line 3 Error in plot(a,b,type="l",col="red",lwd=2): object 'a' not
found
Calls: <Anonymous>
... withCallingHandlers -> withVisisble -> eval -> eval ->
plot Execution halted

The confusing bit here is that the error message points to Line 3, while the
plot() command is in line 8 of the .R file - the line numbers referred to in these
error messages don’t seem to match the line numbers in the file being compiled.

If you run the command from the console to knit the file, you don’t get any
warning errors, but the .html file that is created (in your working directory) has
an object 'a' not found error, that you wouldn’t notice if you didn’t check
it over, since when run from the console you don’t get an automatic preview
of the file. This is either a reason compilation from RStudio is preferable, or a
reason to proofread your html files carefully.

There are other ways to create errors on compilation of a .R file (see the list of
4 important ideas above), but this example is important: Missing objects are
(in my experience) the most common cause of errors with rmarkdown.

Missing objects can cause errors when compiling your document even if the code
worked in the console because when rmarkdown evaluates the code to compile
a document it does so in a separate workspace, not in your workspace. You can
confirm this by clearing your workspace (The broom icon in the environment
pane in RStudio, or rm(list=ls())) and compiling the “Ch4Demo1.R” file (un-
comment the a<-1:25 line). Now look at your workspace in the environment
pane or type ls() in the console. Notice that neither a nor b exist in your
workspace, yet your document compiled without trouble.

This is not a bug, it is a feature. The intent of rmarkdown is to enable “repro-
ducible research”. This means that everything required for the analysis should
be in the script, nothing should happen that isn’t documented. This ends up
creating errors when you write code in the console and don’t include it in your
script. The solution is simple - write all code in the editor and test it in the
console (recall control + enter will run the current line in the editor).

A final note: Plots are included in the .html file only when the plotting window is
complete, or when a #' style comment is added (which closes a block of R code in
the .md file). So if the plotting window is split (e.g using par(mfrow=c(1,2)))
the plot won’t be inserted until both panes have been plotted, even if the second
plot isn’t called until many lines later. The file “Notebook and par.R” in the
code files directory of EssentialR can be modified and compiled to see how this
works.

4.6. EXERCISES. 69

4.6 Exercises.

1) Take your code for Ch2 (Problem 4) and Ch3 (Problem 2) and paste it into a
single .R file. Test it to make sure it runs. Add comments where needed in the
file to discuss/describe the results. Run the code from the console to check it
(select all and Ctrl+enter). Now compile the file. (Hint: Before testing the code
clear your workspace (Session>Clear Workspace) to be sure the code doesn’t
rely on anything left in your workspace from before.)

70 CHAPTER 4. DOCUMENTING YOUR WORK

Chapter 5

Help in R

What to do when you need help

5.1 Introduction.

When using R, one needs help often. Unfortunately, many users find R’s ex-
tensive built in help files to be confusing, especially when you aren’t really sure
which function you need to use, or when you are a new R user.

Actually, when I was a new R user I probably would have said the help files
were “nearly useless”, because I didn’t understand them. In this chapter I hope
to give you a handle on how to make use of them.

5.2 R’s Help System

For any function you can type ? followed by the function name (e.g ?mean).
You can also search for similar functions using ?? - for example ??mean will
return a list of functions that include the word ‘mean’ in the name of short
description1.

In RStudio you can also search the help functions from the “search” field in the
“Help” tab. Finally, RStudio has very good “function hinting” to give short
reminders of function arguments. In the RStudio editor or console type mean()
and with the cursor inside the (), press “tab”. A window will pop up showing
you arguments for the function. You can move through the list with the mouse
or arrow keys, and use “tab” to select one from the list.

1As we’ll see later, searching online may be more profitable until you have a function name.

71

72 CHAPTER 5. HELP IN R

All R help files include several parts: a Description of the function, a typi-
cal Usage of the function, and a list of Arguments and their brief descriptions.
Sometimes a section called Details provides additional details about the argu-
ments. Usually there is a section called Value where the value returned by the
function is explained. There are often also References and a list of similar or re-
lated functions under See Also. Finally, (almost) all help files include Examples
of how the function can be used.
The Examples section is often one of the more useful features of the R help
system. Example code is meant to “stand alone” - any data needed for the
example code should be provided - so that you can copy and paste the code into
your console and run it, and play with arguments to help you figure out how it
works. In my experience this is one of the best ways to learn about a function.
Note that help file examples generally make very few assumptions about
the state of your R workspace. For this reason they may include lines like
require(grDevices) which loads the grDevices package, or stats::rnomr(),
which specifies that rnorm is in the stats package. Since both of these packages
are loaded by default on startup, these details wouldn’t be necessary unless
you had removed them, but the examples don’t assume that they will be there.

5.3 Help! I Don’t Know Which Function to Use.

R’s help system is most useful when you know what function you need (or if you
can at least guess a function that might be linked to the one you need). The
more frustrating quandary is when you don’t even know the function you should
use. This is even worse when you have an idea in your head for what you want,
but aren’t even sure what the correct words for it are.
At times like this I use [RSeek] (http://www.rseek.org), which is an R specific
search engine. This gets around the problem of searching for ‘R + question’,
since R is just a letter. RSeek helpfully organizes search results into categories
such as “R-Project”, “Popular Package”, “RStudio”, etc (Note that these tabs
don’t appear until after you have begun a search).
When you don’t know what function to use, RSeek is your friend. I usually
find that if I describe what I am trying to do and look for forum posts (stack
exchange, etc) I can find what I am looking for. It sometimes takes a few tries
to find the right wording for my query.
Another useful resource is the R archive “CRAN” (https://cran.r-project.org).
The “Task Views” tab on the left points to overviews of analytical areas. These
are often useful if you are trying to figure out a big question like “How do I fit
mixed effects models”?
The “Documentation” tab on the CRAN site also contains many official manuals
and contributed documents (in a wide array of languages). You may find what
you are looking for here, but it would not be the first place I would look.

http://www.rseek.org
https://cran.r-project.org

5.4. I NEED MORE HELP 73

Figure 5.1: Rseek

5.4 I Need More Help

You can also create an account and post questions to the “R help mailing list”
(see the “Mailing Lists” link at www.r-project.org/mail.html). However, don’t
post a question until you are sure it hasn’t been answered already 2 - in other
words “search first, search second, ask third”. Also, be sure to follow the [posting
guidelines] (http://www.r-project.org/posting-guide.html) - they may vary from
site to site, the link is for the R help forums.

Some thoughts about posting to the R mailing lists (and this applies in general
to all online help questions about R). The main idea here is to make it easy for
someone to help you.
1. Remember no one gets paid to answer your questions - questions are answered
by other R users (occasionally even by people who wrote parts of R). The R
user community is generous with its time and expertise - don’t abuse that. My
mantra is “search first, search second, ask third”.
2. State your question as clearly as possible.
3. Make sure you include a reproducible example in your post.
4. If you are getting error messages, include the error message and the code
that generated it.
5. Allow time for responses.

Here is an example of how an example could be posted (from the posting guide,
you’ll need to read the posting guide for the answer).

2I have never needed to post a question - someone else has always asked my questions
before me. This either means that there are a lot of R users asking questions or that my
questions are not very original.

http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html

74 CHAPTER 5. HELP IN R

If I have a matrix x as follows:
x <- matrix(1:8, nrow=4, ncol=2,

dimnames=list(c("A","B","C","D"), c("x","y"))
x
x y
A 1 5
B 2 6
C 3 7
D 4 8

how can I turn it into a dataframe with 8 rows, and three
columns named `row', `col', and `value', which have the
dimension names as the values of `row' and `col', like this:

x.df
row col value
1 A x 1

Notice that the example includes the code to make the data needed for the
example. This makes it easy for someone to help you. You will get help more
quickly if you make it easy for someone to help you.

5.5 Understanding Errors

One of the skills that takes time to develop is understanding error messages. In
some cases error messages can be a bit cryptic. In Essential R I will point out
common errors along the way to assist in recognizing them.

As we’ve noted, R usually responds to unbalanced parentheses with a + in-
stead of the prompt (>) in the console. While this seems obvious, when nesting
functions it is quite easy to misplace a “)”.

5.6 Exercises

To practice using the help system work these three exercises. To reinforce what
you learned about R notebooks, create an R script file with your answers and
compile it to html (remember the notebook button on the editor toolbar). Be
sure to review the .html file for errors.

1) Practice running help examples from ?hist, and ?plot (in {graphics}):
What can you learn about these functions? (Include your example code in your
R script file.)

2) Follow some links from ?hist, and ?plot and run some examples (include
them in your HW) - what did you learn from any of these linked files?

5.6. EXERCISES 75

3) Use www.RSeek.org to find a method to calculate the “outer product” of
2,4,6,8 and -2,-1,0,1,2,3.

76 CHAPTER 5. HELP IN R

Chapter 6

Bivariate Data

Basic approaches to dealing with two variables

6.1 Introduction

A great deal of statistical analysis is based on describing the relationship between
two variables. For example - how does planting density (high, medium, or low)
alter crop yield? How is home price related to lot size? How are height and
foot size related? Is the incidence of heart disease different for men and women?
Here we’ll consider working with two qualitative variables, one qualitative and
one quantitative variable, and two quantitative variables.

6.2 Two Qualitative Variables

We sometimes want to see how two qualitative (factor) variables are related.
Here we’ll work with some data for number of cylinders 1 (cyl) and transmission
type (am) from 32 models of cars reported in Motor Trend magazine in 1974 2.

cyl<-factor(scan(text= "6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4
↪→

8 8 8 8 4 4 4 8 6 8 4"))

1Number of engine cylinders is a nice example of a numeric factor. Not only are the values
constrained to integer values, but there are only a few values that are common, although there
have been a few 3 or 5 cylinder engines. Such a factor could be treated as “ordered”, but
that is beyond the scope of these notes. This variable might also be treated as numeric - the
analyst would have to decide what makes the most sense here.

2This data is found in the mtcars data set that is included with R: as we’ll see later you
can access the whole data set using data(mtcars).

77

78 CHAPTER 6. BIVARIATE DATA

am<-factor(scan(text= "1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1"))

levels(am)<-c("auto","manual")
table(cyl,am)

am
cyl auto manual
4 3 8
6 4 3
8 12 2

table(am, cyl)

cyl
am 4 6 8
auto 3 4 12
manual 8 3 2

It appears that manual transmissions were more common with smaller numbers
of cylinders, while cars with 8 cylinders were far more likely to have automatic
transmissions. Notice that our old friend table() can be used to give a two-
way frequency table as well. Also note that as we discussed in Chapter 2, it is
simpler to enter a long factor as level numbers and assign the levels later.

Sometimes we would rather see tables like this expressed as proportions. R can
easily do this via the function prop.table().

tab <- table(cyl, am)
prop.table(tab, margin = 1)

am
cyl auto manual
4 0.2727273 0.7272727
6 0.5714286 0.4285714
8 0.8571429 0.1428571

The margin=1 tells R that we want the proportions within rows. We can see
that 85% of 8 cylinder cars have an automatic compared to 27% of four cylinder
cars. We can also use margin=2 to have proportions within columns. If we don’t
include the margin argument, the default it to proportions of the entire table.

6.2. TWO QUALITATIVE VARIABLES 79

prop.table(tab, margin = 2)

am
cyl auto manual
4 0.1578947 0.6153846
6 0.2105263 0.2307692
8 0.6315789 0.1538462

prop.table(tab)

am
cyl auto manual
4 0.09375 0.25000
6 0.12500 0.09375
8 0.37500 0.06250

From the first we can see that 63% of cars with automatic transmissions had
8 cylinders. From the second we can see that 38% of cars had both automatic
transmission and 8 cylinders.

Finally, note that in these proportion tables R is giving us a larger number of
decimal places than we might really want. This can be controlled in several
ways - the simplest is via the function signif(), which control the number of
significant digits printed 3.

signif(prop.table(tab), 2)

am
cyl auto manual
4 0.094 0.250
6 0.120 0.094
8 0.380 0.062

We may want to test whether there is any association between categorical vari-
ables. The simplest approach is often to use the χ2 (Chi2) test with the null
hypothesis that the variables are independent.

chisq.test(tab)

3You can also change this by changing R’s options - see ?options. The advantage of using
signif() is that it is temporary and specific to the current command.

80 CHAPTER 6. BIVARIATE DATA

Warning in chisq.test(tab): Chi-squared approximation
may be incorrect

#
Pearson's Chi-squared test
#
data: tab
X-squared = 8.7407, df = 2, p-value = 0.01265

In this case we have evidence of association between more cylinders and au-
tomatic transmissions, but we have a warning - this is because there are too
few values in some of our groups - χ2 is not valid if more than 20% of group
have expected values less than 5. We can confirm that this is the problem by
capturing the output of chisq.test().

names(chisq.test(tab)) # see all the stuff that it produced?

Warning in chisq.test(tab): Chi-squared approximation
may be incorrect

[1] "statistic" "parameter" "p.value" "method"
[5] "data.name" "observed" "expected" "residuals"
[9] "stdres"

chisq.test(tab)$expected

Warning in chisq.test(tab): Chi-squared approximation
may be incorrect

am
cyl auto manual
4 6.53125 4.46875
6 4.15625 2.84375
8 8.31250 5.68750

We have a couple of options to deal with such an violation of assumtions:

1. As long as we have a table that is greater than 2x2 we may be able to
combine some categories to increase the expected values, though that
may not make sense depending on what the categories represent.

6.2. TWO QUALITATIVE VARIABLES 81

2. Perhaps better is the option noted in ? chisq.test that allows us to
simulate the null distribution, which lets us avoid the violation of assump-
tions (and the warning). Of course, you should use a reasonably large
number of iterations, which does impose a slight speed penalty. Some-
thing like chisq.test(tab, simulate.p.value=TRUE, B=5000) should
work. The B=5000 tells R to generate 5000 random scrables of the data
that have the same row and column totals.

Note that it is not an option to simply multiply the table by some factor that
ensures our expected values don’t fall below 5. This is because the /chi2 test
statistic is calculate on observed and expected frequencies, not on relative fre-
quencies or proportions.

By the way, we could also calculate the expected values by hand - rowSums()
will give the row sums of an array, so rowSums(x)/sum(x) will give the row
proportions for an array.

sum(tab) # total

[1] 32

outer(rowSums(tab)/sum(tab), colSums(tab)/sum(tab)) * sum(tab)

auto manual
4 6.53125 4.46875
6 4.15625 2.84375
8 8.31250 5.68750

It is nice to see that our “by hand” calculation matches R’s calculations!

There are a couple of possible ways to visualize such data. One option is using
a barplot.

op = par(mfrow = c(1, 2))
barplot(table(cyl, am))
barplot(table(am, cyl))

82 CHAPTER 6. BIVARIATE DATA

auto manual

0
5

10
15

4 6 8

0
2

4
6

8
10

12
14

Note: the function par() is used to set graphical parameters - in this case we’re
specifying that the plotting window will be divided into 1 row and 2 columns.
We’ve simultaneously saved the old par settings as op. There are a few more
options we can use to dress this up. The confusing thing here is that it is
the old settings that are saved, not the new ones. Also note that the function
options() we discussed above functions in a similar way with assignment of old
options. It is possible that you may never need to set options - it just depends
on how you use R.

par(mfrow=c(1,2),mar=c(3,3,3,0.5))
barplot(table(cyl,am),legend.text=TRUE,main="Transmission and

cylinders")↪→

barplot(table(cyl,am),beside=TRUE,legend.text=TRUE,
main="Transmission and cylinders")

6.2. TWO QUALITATIVE VARIABLES 83

auto manual

8
6
4

Transmission and cylinders

0
5

10
15

auto manual

4
6
8

Transmission and cylinders

0
2

4
6

8
10

12

par(op)

Here in addition to dividing the plotting window we’ve used par() to reduce
the plot margins. The final line restores the old par settings we saved earlier.
4 Another option which is less familiar is the mosaic plot, which shows the
proportions of each combination of factors.

mosaicplot(table(cyl, am), color = T, main = "Cylinders vs.
transmission",↪→

ylab = "Transmission", xlab = "Cylinders")

4Restoring the old par settings is sometimes important - once we split the plotting window
it stays split, and we might not want it to.

84 CHAPTER 6. BIVARIATE DATA

Cylinders vs. transmission

Cylinders

Tr
an

sm
is

si
on

4 6 8

au
to

m
an

ua
l

Note that many of the arguments here are optional. You can try leaving them
out to see what they do; the minimum is mosaicplot(table(cyl,am)).

6.3 Two Quantitative Variables

We frequently find that we are looking for association between two quantitative
variables. For example, using the motor trend cars data we might wish to look
at the association between engine displacement (here in liters) and power output
(horsepower).

disp=scan(text=
"2.62 2.62 1.77 4.23 5.90 3.69 5.90 2.40 2.31 2.75 2.75 4.52
4.52 4.52 7.73 7.54 7.21 1.29 1.24 1.17 1.97 5.21 4.98 5.74
6.55 1.29 1.97 1.56 5.75 2.38 4.93 1.98")

hp=scan(text=
"110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215
230 66 52 65 97 150 150 245 175 66 91 113 264 175 335 109")

6.3.1 Exploring the data

op = par(mfrow = c(1, 2))
boxplot(disp)
boxplot(hp)

6.3. TWO QUANTITATIVE VARIABLES 85

1
2

3
4

5
6

7

50
10

0
20

0
30

0

par(op)

Both variables show a bit of skew, with a larger number of low values. The plot
of horsepower shows one possible outlier. We can find which it is using logical
extraction:

data(mtcars) # load the whole data set
mtcars[which(mtcars$hp > 250),]

This shows only 2 cars with horsepower greater than 250. Notice that here we
used the function data() to load one of the built-in data sets, and that we
used the $ to specify a variable within a dataset. We’ll discuss this in more
detail soon. Also notice that within the [] we have a comma - the format is
[rownumber,columnnumber], and we want the rows with hp>250.

6.3.2 Correlation

We might guess that there is some correlation between displacement and power.
A simple scatter plot will confirm this:

plot(x = disp, y = hp)

86 CHAPTER 6. BIVARIATE DATA

1 2 3 4 5 6 7

50
15

0
25

0

disp

hp

cor(disp, hp)

[1] 0.7910567

Notice that plot() here gives us a scatter plot 5. The correlation coefficient r
is reasonably high at 0.7910567.

By default cor() gives us the pearson correlation. By setting the method argu-
ment to method="spearman" we can get the spearman rank correlation (which
is more robust to outliers). It should be noted that the cor() function needs
to be told how to deal with missing values (NA) - this is done via the argument
use, which tells R which values to use. A setting of use="complete.obs" will
often work (see ?cor for more information).

6.3.3 Regression

Often we want to go a step further and model one variable as a function of
another. With two quantitative variables this is known as linear regression (re-
gression for short). In this case, we might well suspect that larger displacement
engines should be more powerful. In R such models are fit using lm() (for
“linear model”):

model = lm(hp ~ disp)
model

5We could omit the names of the x and y arguments, the first will be taken as x and the
second as y. Also plot(hp~disp) would work.

6.3. TWO QUANTITATIVE VARIABLES 87

#
Call:
lm(formula = hp ~ disp)
#
Coefficients:
(Intercept) disp
45.69 26.71

summary(model)

#
Call:
lm(formula = hp ~ disp)
#
Residuals:
Min 1Q Median 3Q Max
-48.682 -28.396 -6.497 13.571 157.620
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.695 16.128 2.833 0.00816 **
disp 26.711 3.771 7.083 7.09e-08 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 42.64 on 30 degrees of freedom
Multiple R-squared: 0.6258, Adjusted R-squared: 0.6133
F-statistic: 50.16 on 1 and 30 DF, p-value: 7.093e-08

Notice a couple of things here:
1. in our call to lm() we specified hp~disp - this means hp as a function of
disp. This type of model notation is used by a number of functions in R.
2. lm(hp~disp) returns only the intercept and slope for the model.
3. lm() has actually done much more - it has created an “lm object” that
we have named model. Type names(model) to see what all is there - you can
access all of these - for example model$residuals will return the residuals from
the model. 4. The function summary() when called on an lm object, gives a
very helpful summary of the regression. This shows that our model is highly
significant, with p-value = 7.093 x 10ˆ-8 .

If you recall one of the assumptions in regression is that the residuals are nor-
mally distributed. We can check to see if this is true:

88 CHAPTER 6. BIVARIATE DATA

plot(density(model$residuals))

−100 0 50 100 150 200

0.
00

0
0.

00
6

0.
01

2
density.default(x = model$residuals)

N = 32 Bandwidth = 14.09

D
en

si
ty

Overall, the residuals are not really normally distributed, but they are prob-
ably normal enough for the regression to be valid. Of course, checking model
assumptions is a common (and necessary) task, so R makes it easy to do.

op = par(mfrow = c(2, 2))
plot(model)

100 150 200 250

−
50

0
50

15
0

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

31

30 29

−2 −1 0 1 2

−
1

0
1

2
3

4

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

31

3029

100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
31

30 29

0.00 0.05 0.10 0.15

−
1

1
2

3
4

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

0.5

1

Residuals vs Leverage

31

15

29

6.3. TWO QUANTITATIVE VARIABLES 89

The normal Q-Q plot does show that we may have one outlier, point 31 (The
Maserati Bora). We could refit the model without it to see if it fits better.

op = par(mfrow = c(2, 2))
model2 <- lm(hp[-31] ~ disp[-31])
summary(model2)

#
Call:
lm(formula = hp[-31] ~ disp[-31])
#
Residuals:
Min 1Q Median 3Q Max
-44.704 -21.601 -2.255 16.349 72.767
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 46.146 11.883 3.883 0.000548 ***
disp[-31] 25.232 2.793 9.033 6.29e-10 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 31.41 on 29 degrees of freedom
Multiple R-squared: 0.7378, Adjusted R-squared: 0.7287
F-statistic: 81.6 on 1 and 29 DF, p-value: 6.291e-10

plot(model2)

90 CHAPTER 6. BIVARIATE DATA

100 150 200

−
40

0
40

80

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

2930

24

−2 −1 0 1 2

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

2930

24

100 150 200

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
2930
24

0.00 0.05 0.10 0.15
−

1
0

1
2

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

0.5

Residuals vs Leverage

29

15

30

par(op)

Removing the outlier really improves the model fit - the R2 increases to 0.729,
and the residuals look much more normal (the Q-Q plot is more linear). It is
not generally wise to remove a value just because it is an outlier, though if you
have reason to beleive the value is erroneous that may be grounds for excluding
it from the analysis. It is less clear-cut whether removing outliers to meet
assumptions for an analytical method is accepteable - I would probably err on
the side of “don’t remove”. However, I do think it is a good idea to investigate
the extent to which unusual values (outliers) influence the findings in a study
- in a situation where their presence substantially altered the conclusions of a
study, we would want to know that.

6.4 Qualitative and Quantitative Variables

When we have a quantitative and a qualitative variable, we can use similar
tools to what we would use for two quantitative variables. Consider the data
on cars - do we expect a difference in horsepower between cars with automatic
and manual transmissions?

plot(am, hp)

6.4. QUALITATIVE AND QUANTITATIVE VARIABLES 91

auto manual

50
15

0
25

0

x

y

It appears that more cars with automatic transmissions are generally more pow-
erful, though the two most powerful cars have manual transmissions - we saw
these earlier. We can use a two-sample t-test to see if these groups are different.

t.test(hp ~ am)

#
Welch Two Sample t-test
#
data: hp by am
t = 1.2662, df = 18.715, p-value = 0.221
alternative hypothesis: true difference in means between group auto and group manual is not equal to 0
95 percent confidence interval:
-21.87858 88.71259
sample estimates:
mean in group auto mean in group manual
160.2632 126.8462

This show that the means are not different - likely the influence of the two
“super-cars” with manual transmissions pulls the mean up enough to mask the
difference.

6.4.1 ANOVA

Note that if we had more than two groups, we’d need a different approach
- we can use oneway.test() to do a simple ANOVA. For two groups this is
equivalent to the t-test, but it will work for more than two groups also.

92 CHAPTER 6. BIVARIATE DATA

Since R uses the function lm() for both regression and ANOVA, you may find
it helpful to think about ANOVA as a kind of regression, where the predictor
variable (x-axis) is categorical.

NOTE: lm() and oneway.test() will return errors if you use a factor as the
response variable, so recall that “~” should be read as “as a function of”, so that
cyl~hp is “cylinders (factor in our case) ~ horsepower” would not work here.

oneway.test(hp ~ am)

#
One-way analysis of means (not assuming equal
variances)
#
data: hp and am
F = 1.6032, num df = 1.000, denom df = 18.715,
p-value = 0.221

oneway.test(hp ~ cyl)

#
One-way analysis of means (not assuming equal
variances)
#
data: hp and cyl
F = 35.381, num df = 2.000, denom df = 16.514,
p-value = 1.071e-06

summary(lm(hp ~ cyl))

#
Call:
lm(formula = hp ~ cyl)
#
Residuals:
Min 1Q Median 3Q Max
-59.21 -22.78 -8.25 15.97 125.79
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.64 11.43 7.228 5.86e-08 ***
cyl6 39.65 18.33 2.163 0.0389 *
cyl8 126.58 15.28 8.285 3.92e-09 ***

6.5. EXERCISES 93

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 37.92 on 29 degrees of freedom
Multiple R-squared: 0.7139, Adjusted R-squared: 0.6941
F-statistic: 36.18 on 2 and 29 DF, p-value: 1.319e-08

We’ll dig into ANOVA in more depth in a later chapter.

6.5 Exercises

1) Using the data cyl and am (transmission type) from Part II, group vehicles
into two groups - 8 cylinder and less than 8 cyl. Test whether there is evidence
of association between number of cylinders (8 or <8) and type of transmission.
(Hint - use levels() to re-level cyl and then use chisq.test()).

2) The built in dataset faithful records the time between eruptions and the
length of the prior eruption (both in minutes) for 272 inter-eruption intervals
(load the data with data(faithful)). Examine the distribution of each of these
variables with stem() or hist(). Plot these variables against each other (scat-
terplot) with the length of each eruption (eruptions) on the x- axis. How would
you describe the relationship? Recall that you can use faithful$eruptions to
access eruptions within faithful.

3) Fit a regression of waiting as a function of eruptions (i.e. waiting~eruptions;
waiting on the y-axis and eruptions on the x-axis). What can we say about
this regression? Compare the distribution of the residuals (model$resid where
model is your lm object) to the distribution of the variables.

4) The clustering evident in this data might suggest regression is not the best
way to analyze it. Might it be better to compare the means using an ANOVA
? Create a categorical variable from eruptions to separate long eruptions from
short eruptions (2 groups) and fit a model of waiting based on this. (Hint: a:
use cut() to make the categorical variable. The argument ‘breaks=’ can be a
single value - the number of groups to create, or a vector of n values defining
the edges of n-1 groups. b: Use lm() to fit the model, exactly as you did for
the regression. lm() with a categorical predictor variable is an ANOVA.) How
does this model compare with that from Ex 3? How did you choose the point at
which to cut the data? How might changing the cut-point change the results?

94 CHAPTER 6. BIVARIATE DATA

Chapter 7

The Data Frame

The R equivalent of the spreadsheet

7.1 Introduction

Most analytical work involves importing data from outside of R and carrying
out various manipulations, tests, and visualizations. In order to complete these
tasks, we need to understand how data is stored in R and how it can be accessed.
Once we have a grasp of this we can consider how it can be imported (see
Chapter 8).

7.2 Data Frames

We’ve already seen how R can store various kinds of data in vectors. But what
happens if we have a mix of numeric and character values? One option is a list

a <- list(c(1, 2, 3), "Blue", factor(c("A", "B", "A", "B",
"B")))

a

[[1]]
[1] 1 2 3
#
[[2]]
[1] "Blue"
#

95

96 CHAPTER 7. THE DATA FRAME

[[3]]
[1] A B A B B
Levels: A B

Notice the [[]] here - this is the list element operator. A list in R can contain
an arbitrary number of items (which can be vectors) which can be of different
forms - here we have one numeric, one character, an one factor, and they are all
of different lengths.

A list like this may not be something you are likely to want to use often, but
in most of the work you will do in R, you will be working with data that is
stored as a data frame - this is R’s most common data structure. A data frame
is a special type of list - it is a list of vectors that have the same length, and
whose elements correspond to one another - i.e. the 4th element of each vector
correspond. Think of it like a small table in a spreadsheet, with the columns
corresponding to each vector, and the rows to each record.

There are several different ways to interact with data frames in R. “Built in”
data sets are stored as data frames and can be loaded with the function data().
External data can be read into data frames with the function read.table() and
its relative (as we’ll see in the next chapter). Existing data can be converted
into a data frame using the function data.frame().

cyl<-factor(scan(text= "6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4
8 8 8 8 4 4 4 8 6 8 4"))

am<-factor(scan(text= "1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 1 1 1 1"))

levels(am)<-c("auto","manual")
disp<-scan(text= "2.62 2.62 1.77 4.23 5.90 3.69 5.90 2.40 2.31

2.75 2.75 4.52 4.52 4.52 7.73 7.54 7.21 1.29 1.24 1.17 1.97
5.21 4.98 5.74 6.55 1.29 1.97 1.56 5.75 2.38 4.93 1.98")

hp<-scan(text= "110 110 93 110 175 105 245 62 95 123 123 180 180
↪→

180 205 215 230 66 52 65 97 150 150 245 175 66 91 113 264 175
↪→

335 109")

Here we’ve re-created the data on cars that we used in the last chapter.

car <- data.frame(cyl, disp, hp, am)
head(car)
summary(car)

cyl disp hp am
4:11 Min. :1.170 Min. : 52.0 auto :19

7.2. DATA FRAMES 97

6: 7 1st Qu.:1.978 1st Qu.: 96.5 manual:13
8:14 Median :3.220 Median :123.0
Mean :3.781 Mean :146.7
3rd Qu.:5.343 3rd Qu.:180.0
Max. :7.730 Max. :335.0

Now we’ve created a data frame named car. The function head() shows us the
first 6 rows (by default). Here we see that summary(), when called on a data
frame, gives the appropriate type of summary for each variable. The variables
within the data frame have names, and we can use the function names() to
retrieve or change these.

names(car)

[1] "cyl" "disp" "hp" "am"

names(car)[4] <- "trans"
names(car)

[1] "cyl" "disp" "hp" "trans"

car$am

NULL

car$trans

[1] manual manual manual auto auto auto auto
[8] auto auto auto auto auto auto auto
[15] auto auto auto manual manual manual auto
[22] auto auto auto auto manual manual manual
[29] manual manual manual manual
Levels: auto manual

Data in data frames can be accessed in several ways. We can use the indexing
operator [] to access parts of a data frame by rows and columns. We can also
call variables in a data frame by name using the $ operator.

car[1:3,]
car[, 3]

98 CHAPTER 7. THE DATA FRAME

[1] 110 110 93 110 175 105 245 62 95 123 123 180 180
[14] 180 205 215 230 66 52 65 97 150 150 245 175 66
[27] 91 113 264 175 335 109

car$hp

[1] 110 110 93 110 175 105 245 62 95 123 123 180 180
[14] 180 205 215 230 66 52 65 97 150 150 245 175 66
[27] 91 113 264 175 335 109

Note that when indexing a data frame we use 2 indices, separated by a comma
(e.g. [2,3]). Leaving one value blank implies “all rows” or “all columns”. Here
the first line gives us rows 1:3, the second and third both give us the hp variable.

Where we’ve created a new data frame in this way it is important to note that
R has copied the vectors that make up the data frame. So now we have hp and
car$hp. It is important to know this because if we change one, the other is not
changed.

hp[1] == car$hp[1]

[1] TRUE

hp[1] <- 112
hp[1] == car$hp[1]

[1] FALSE

In a case like this, it might be a good idea to remove the vectors we used to
make the data frame, just to reduce the possibility of confusion. We can do this
using the function rm().

ls()

[1] "a" "am" "car" "cyl" "disp" "hp"

rm(cyl, disp, hp, am)
ls()

[1] "a" "car"

7.2. DATA FRAMES 99

Now these vectors are no longer present in our workspace.

It is useful to know that many R functions (lm() for one) will accept a data argu-
ment - so rather than lm(car$hp~car$cyl) we can use lm(hp~cyl,data=car).
When we specify more complex models, this is very useful. Another approach
is to use the function with() - the basic syntax is with(some-data-frame,
do-something) - e.g. with(car,plot(cyl,hp)).

7.2.1 Indexing Data Frames

Since our data car is a 2-dimensional object, we ought to use 2 indices. Using
the incorrect number of indices can either cause errors or cause unpleasant
surprises. For example, car[,4] will return the 4th column, as will car$am
or car[[4]]. However car[4] will also return the 4th column. If you had
intended the 4th row (car[4,]) and forgotten the comma, this could cause
some surprises.

car[[4]]

[1] manual manual manual auto auto auto auto
[8] auto auto auto auto auto auto auto
[15] auto auto auto manual manual manual auto
[22] auto auto auto auto manual manual manual
[29] manual manual manual manual
Levels: auto manual

head(car[4])

However, if we use a single index greater than the number of columns in a
data frame, R will throw an error that suggests we have selected rows but not
columns.

car[5]

Error in `[.data.frame`(car, 5): undefined columns selected

Similarly, if we try to call for 2 indices on a one-dimensional object (vector) we
get an “incorrect number of dimensions”.

car$hp[2, 3]

Error in car$hp[2, 3]: incorrect number of dimensions

100 CHAPTER 7. THE DATA FRAME

In my experience, these are rather common errors (at least for me!), and you
should recognize them.
The function subset() is very useful for working with dataframes, since it
allows you to extract data from the dataframe based on multiple conditions,
and it has an easy to read syntax. For example, we can extract all the records
of the faithful data with eruptions less than 3 minutes long (summary() used
here to avoid spewing data over the page).

data(faithful)
summary(subset(faithful, eruptions <= 3))

eruptions waiting
Min. :1.600 Min. :43.00
1st Qu.:1.833 1st Qu.:50.00
Median :1.983 Median :54.00
Mean :2.038 Mean :54.49
3rd Qu.:2.200 3rd Qu.:59.00
Max. :2.900 Max. :71.00

7.3 Attaching data

Many R tutorials will use the function attach() to attach data to the search
path in R. This allows us to call variables by name. For example, in this case
we have our data frame car, but to get the data in hp we need to use car$hp
- any function that calls hp directly won’t work - try mean(hp). If we use
attach(car) then typing hp gets us the data, and function calls like mean(hp)
will now work. There are (in my experience) 2 problems with this:

A) When attaching data, R makes copies of it, so if we change hp, the copy is
changed, but the original data, car$hp isn’t changed unless we explicitly
assign it to be changed - i.e. hp[2]=NA is not the same as car$hp[2]=NA.
Read that again - hp is not necessarily the same as car$hp! THIS IS A
VERY GOOD REASON NOT TO ATTACH DATA.

attach(car)

The following objects are masked from car (pos = 3):
#
cyl, disp, hp, trans

The following objects are masked from car (pos = 5):
#
cyl, disp, hp, trans

7.4. CHANGING DATA FRAMES 101

The following objects are masked from car (pos = 6):
#
cyl, disp, hp, trans

The following objects are masked from car (pos = 7):
#
cyl, disp, hp, trans

mean(hp)

[1] 146.6875

hp[1] <- 500
hp[1] == car$hp[1]

[1] FALSE

B) In my experience it is not uncommon to have multiple data sets that
have many of the same variable names (e.g. biomass). When attaching,
these conflicting names cause even more confusion. For example, if we
had not removed the vectors cyl, disp, and hp above, then when we
try attach(car) R will give us this message:

The following object is masked _by_ .GlobalEnv:

cyl, disp, hp

For these reasons I view attach() as a convenience for demonstration of R use,
and not as a “production” tool. I do not use (or only very rarely) attach(),
and when I do I am sure to use detach() as soon as I am done with the data.

7.4 Changing Data Frames

Having imported or created a data frame it is likely that we may want to alter
it in some way. It is rather simple to remove rows or columns by indexing -
car<-car[-31,] will remove the 31st row of the data and assign the data to
its previous name. Similarly car[,-4] would remove the 4th column (though
here the changed data was not assigned).

It is also very simple to add new columns (or rows) to a data frame - simply
index the row (or column) n+1, where n is the number of rows (or columns).

102 CHAPTER 7. THE DATA FRAME

Alternately, just specifying a new name for a variable can create a new column.
Here we’ll demonstrate both - to calculate a new variable, displacement per
cylinder, we first need cylinders as numeric. We’ll use the ‘approved’ method of
converting a factor to numeric - indexing the levels (see Chapter 2).

car[, 5] <- as.numeric(levels(car$cyl)[car$cyl])
names(car)

[1] "cyl" "disp" "hp" "trans" "V5"

names(car)[5] <- "cyl.numeric"

Our data set now has 5 columns, but until we give the new variable a name it
is just "V5", for ‘Variable 5’. Let’s calculate displacement per cylinder:

car$disp.per.cyl <- car$disp/car$cyl.numeric
names(car)

[1] "cyl" "disp" "hp"
[4] "trans" "cyl.numeric" "disp.per.cyl"

This method of creating a new variable is easier because we don’t have to bother
about the variable name, or about which column in will occupy. Had we used a
numeric index of 5, we would overwrite the value in that column.

Sometimes we might wish to combine 2 data frames together. We can do this
using cbind() and rbind() (for column -wise and row -wise binding respec-
tively). The dataset mtcars contains several variables that are not in our data
frame cars. We’ll use cbind() to combine the 2 data sets.

data(mtcars) # load the data
names(mtcars) # cols 1,5:8,10:11 not in our data

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"
[8] "vs" "am" "gear" "carb"

dim(car)

[1] 32 6

7.5. EXERCISES 103

car <- cbind(car, mtcars[, c(1, 5:8, 10:11)])
dim(car)

[1] 32 13

head(car)

Note that the row names from mtcars have followed the variables from that data
frame. A couple of observations about using adding to data frames: * Don’t use
cbind() if the rows don’t correspond!- we’ll see how to use merge() (Chapter
10) which is the right tool for this situation. (Similarly don’t use rbind() if the
columns don’t correspond). * cbind() and rbind() are rather slow - don’t use
them inside a loop! * If you are writing a loop it is far more efficient to make
space for your output (whether in a new data frame or by adding to one) before
the loop begins, adding a row to your data frame in each iteration of a loop will
slow your code down.

7.4.1 EXTRA: Comments

There is an attribute of data frames that is reserved for comments. The function
comment() allows one to set this. comment(car) will return NULL because no
comment has been set, but we can use the same function to set comments.

comment(car) <- "A data set derived from the mtcars dataset.
Displacement is in liters"↪→

Now we have added a comment to this dataset, and comment(car) will retrieve
it.

7.5 Exercises

1) Use the mtcars data (data(mtcars)) to answer these questions (if you get
confused, review the bit on logical extraction in Chapter 1):
a) Which rows of the data frame contain cars that weigh more than 4000 pounds
(the variable is wt, units are 1000 pounds).
b) Which cars are these? (Hint: since rows are named by car name, use
row.names()).
c) What is the mean displacement (the variable isdisp, units are inches3) for
cars with at least 200 horsepower (hp)?
d) Which car has the highest fuel economy (the variable is mpg)?
e) What was the fuel economy for the Honda Civic?

104 CHAPTER 7. THE DATA FRAME

2) Using the mtcars data create a new variable for horsepower per unit weight
(hp/wt). Is this a better predictor of acceleration (qsec; seconds to complete
a quarter mile) than raw horsepower? (Hint - check out correlations between
these variables and acceleration, or fit regressions for both models).

3) Use the function subset() to return the cars with 4 cylinders and automatic
transmissions (am = 0). (Hint: use “&” for logical “AND”; see ?Logic and
select Logical Operators).

Chapter 8

Importing Data

Getting your data into R

8.1 Introduction

Now that we understand how data frames function in R we’ll see how they can
be created by importing data. Importing data into R can be a difficult process,
and many R learners get stuck here and give up (I quit here several times
myself!). In order to avoid getting stuck, we’ll consider some of the problems
that can arise. While this is among the shortest chapters in this book, I believe
it is among the most important.

8.2 Importing Data

The most universal way to import data into R is by using the function
read.table() or one of it’s derivatives (read.delim() and read.csv()) 1. R
can easily read three types of data files - comma separated values (.csv), tab
delimited text (.txt), and space delimited text (.txt). (I’ve order them here in
my order of preference - .csv files are usually the least troublesome). There are
other ways to import data - reading data from the web, or from spreadsheet
files. These are more advanced or limited to specific installations of R - for now
we’ll focus on the most common and useful tools.

Typical process:
1) clean up data in spreadsheet.

1If you look at ?read.table you’ll see that read.delim() and read.csv() are just ver-
sions of read.table() with different default values. They may be referred to as ‘convenience
functions’.

105

106 CHAPTER 8. IMPORTING DATA

* a) replace empty cells with NA or other consistent string (absolutely critical
for space-delimited files).
* b) fix column names (no spaces, no special characters, ‘.’ and ’_’ are OK).
* c) save as *.csv or *.txt. (Use File>Save as and select Comma separated
values) 2) Try to import the data read.csv(...).
* a) if errors occur, open the .csv file in a text editor and find and remove prob-
lems (missing new lines, tabs, spaces or spurious quotation marks are common
culprits) and repeat 1c) and 2). For this step is especially helpful to have the
ability to see “invisible” characters - good text editors 2 will do that.
3) Check the data - names(), dim(), and summary() are my favorite tools, but
str() works also.

8.2.1 On Using the “Working directory”

R wants to know where to save files and where to find files. When saving or
opening files you can specify the complete file path (e.g “C:/Documents and
Settings/EssentialR/my-file.R”), but this is not usually necessary. R will look
for (or create) files by name in the working directory, which is just R speak for
the folder you choose to have R use. Use getwd() to see what your working
directory is. To change it use setwd("file/path/here"). Alternately, most R
GUIs have a tool to do this - in RStudio go to “Session>Set Working Directory”
and select the folder you want to use. The full command will show up in the
console - it is a good idea to copy and paste this into your editor - now when
you save your code, you have a note of where the working directory for that
code is.

Note From here on, these notes assume that you are using the “Code Files”
folder in your “EssentialR” directory as the working directory. Examples point
to files in the “Data” directory in “EssentialR”, so file paths will resemble
../Data/some-file.csv; the ../Data/ means “go up one level and find the
folder called Data”.

8.3 An Example

First we’ll examine this data in Excel. Open the file “W101-2010.xls”. First
we’ll make sure there are no empty cells (use NA) for empty cells. Next we’ll
delete unnecessary or partial columns. Finally we’ll save it as a .csv file. Now
we can import it using the following code - set the file path

2A good text editor is a wonderful tool. For Windows Notepad++ is the best I know of,
but there may be better. On OSX I like Text Wrangler, on Linux Gedit or Geany work pretty
well.

8.3. AN EXAMPLE 107

my.data <-
read.csv("~/Dropbox/R_Class/EssentialR/Data/W101-2010.csv",↪→

comm = "#", stringsAsFactors = TRUE)
my.data <- read.csv("../Data/W101-2010.csv", comm = "#",

stringsAsFactors = TRUE)↪→

my.data <- read.csv(file.choose(), header = TRUE,
stringsAsFactors = TRUE) # point the file selection dialog
to the `W101-2010.csv` file

↪→

↪→

my.data <- read.table("../Data/W101-2010.csv", header = TRUE,
sep = ",", quote = " \" ", stringsAsFactors = TRUE)

These are four nearly equivalent ways to read the same data! The first three
are identical except for the way the file path is specified. Note that while the
first way is a bit more cumbersome, it does have the advantage of keeping a full
record of where the file came from. If you use the second form, it might be a
good idea to include a note of the working directory (getwd() works for this)
in your code. If you use the third, you really should note what the file was, or
else when you come back to this in a year you won’t know what file you read
in (ask me how I know!). Also, note that the third method will fail to import
correctly if there are comments in the data file, because we have not told R how
to recognize comments.

The fourth method uses read.table() rather than read.csv(), so several other
arguments need to be changed:
1) We don’t need to specify a comment character, as “#” is default 2) We need
to specify the comma separator (sep=",") so each row is parsed into 7 columns
as indicated by the location of commas in the text. 3) We need to specify the
header= argument, because we want the variable names to be included. 4) We
need to specify the quote= argument - the default is quote="\'"", which means
either a ' or a " can be interpreted as a quote. We replaced the default with
quote="\"", meaning that a ' won’t be treated as a quote. It is instructive
to see what happens if we don’t specify this - instead of 270 rows of data, we
get 107 - there are a few records here that include an ', and if R thinks ' is a
quote, all text between one ' and the next ' is treated as a quote, and so all
separators (commas) and new line characters are ignored. In the quote="\"",
the enclosing " " are there because R needs a quoted string for the argument.
The \ is an escape character, so the " that follows it won’t be treated as the
closing ".

Note the argument,stringsAsFactors = TRUE. The default behavior (as of
version 4.0) is that text variables (strings) are imported character variables,
rather than being coerced to factors. In my examples, I want to convert these
strings to factors, so I am overriding the default. An alternative would be to use
the argument colClasses= to pass a vector of data types, though this would
be unwieldy for datasets with many variables (columns).

108 CHAPTER 8. IMPORTING DATA

8.4 An Easier Way (with Caveats!)

RStudio has a nice built in data import tool. In the “Environment” browser
toolbar (upper right pane) there is an icon for Import Dataset that features a
rather nice dialog for importing data from Text files, from Excel, and from a
few other file formats. Importantly this GUI tool writes the code for the action
it completes, so it is trivial to copy the code into your document in the editor
(so that you can document your work or compile your HW) and add any further
arguments or code comments.
Most recent versions of RStudio allow you to specify whether to use readr or
base for importing from a text file, so I encourage use of the Import Dataset
dialog with Base R 3.

Figure 8.1: ImportDataSet

If you click on Import Dataset>From Text (base) and navigate to the
W101-2010.csv file in the EssentialR/Data folder, the dialog brings up an
import and preview tool.
You get a preview of the raw input file (top) and the way it will be converted
to a data.frame (bottom). On the left are multiple arguments for read.csv(),
so you can control things like header=, sep=, quote=, ect. This is very useful
b/c you can easily see how changing these arguments will change how the data
is imported. (For example, see what happens if you change sep= from comma
to something else).
I held off presenting this until later in the chapter for two reasons:
1) I want to be sure you understand how read.table() works, because the
troubleshooting described below may apply when using the GUI also.
2)When you use the Import Dataset dialog in RStudio, the code created in-
cludes View(my.data), which gives you a preview in RStudio. This is a great

3This will work unless you have massive datasets - for very large data, read_table() will
be preferable - readr creates tibbles which are a variant of the data.frame that will work on
much larger data sets.

8.4. AN EASIER WAY (WITH CAVEATS!) 109

Figure 8.2: ImportDataPreview

110 CHAPTER 8. IMPORTING DATA

way to check (though I would still use summary(my.data) as well!), but if you
paste the code into your .R file and try to compile it, it will choke on View().
This is because View() opens a preview in RStudio, but the compilation is not
really “in” RStudio.

8.5 Importing Other Data Types

It is possible to import data files (.csv, etc) from websites, either via ftp or http,
simply by replacing the file name with the URL. Note that this will not work
with https sites, limiting its usefulness somewhat.

The package googlesheets provides tools to read and write data from
googlesheets. This is pretty useful.

The packages xlsx and readxl allow for data to be imported from Microsoft
Excel files, though it is worth noting that now one also has to take note of which
worksheet is imported as well as which file.

There are also tools to allow data files from SAS, SPSS, etc - you can find
information via Rseek.org.

There are also tools to import data from databases - see this page on Quick R
for more information.

Finally note that write.table() functions to write R objects to text files, so
your can export data as well. See ?write.table for more details.

8.6 Some Typical Problems

I’ve already noted a couple of common issues (specifying the correct separator,
header, and quote characters). Here I have a couple of examples to show what
to look for when data import doesn’t work.

Note Make sure your working directory is set to your “Code Files”
folder.

setwd("~/Dropbox/R class/EssentialR/Code Files")

my.data <- read.table("../Data/Ex1.txt", header = TRUE)
dim(my.data)

[1] 6 4

http://www.statmethods.net/input/dbinterface.html

8.6. SOME TYPICAL PROBLEMS 111

summary(my.data)

MeanDM DMn Jday
Min. :380.0 Min. :8 Min. :117.0
1st Qu.:610.8 1st Qu.:8 1st Qu.:130.2
Median :673.8 Median :8 Median :137.0
Mean :689.2 Mean :8 Mean :137.2
3rd Qu.:794.1 3rd Qu.:8 3rd Qu.:146.0
Max. :984.0 Max. :8 Max. :155.0
DMse
Min. :27.66
1st Qu.:29.31
Median :31.65
Mean :39.50
3rd Qu.:42.78
Max. :71.01

my.data <- read.delim("../Data/Ex1.txt", header = TRUE)
dim(my.data)

[1] 7 4

summary(my.data)

MeanDM DMn
Length:7 Length:7
Class :character Class :character
Mode :character Mode :character
Jday DMse
Length:7 Length:7
Class :character Class :character
Mode :character Mode :character

These two are different even though the same data was read - why? Hint Look
at ?read.table and note the default settings for comment.character.
Occasionally there are small problems with the file that you can’t see in Excel.
The file “Ex2.txt” has a missing value with no NA.

my.data <- read.table("../Data/Ex2.txt", header = TRUE)
produces an error
my.data <- read.table("../Data/Ex2.txt", header = TRUE, sep =

"\t")↪→

112 CHAPTER 8. IMPORTING DATA

no error message, *BUT* --->
dim(my.data)

[1] 6 4

summary(my.data)

MeanDM DMn Jday
Min. :380.0 Min. :8 Min. :117
1st Qu.:610.8 1st Qu.:8 1st Qu.:137
Median :673.8 Median :8 Median :137
Mean :689.2 Mean :8 Mean :139
3rd Qu.:794.1 3rd Qu.:8 3rd Qu.:149
Max. :984.0 Max. :8 Max. :155
NA's :1
DMse
Min. :27.66
1st Qu.:29.31
Median :31.65
Mean :39.50
3rd Qu.:42.78
Max. :71.01
#

but an NA was introduced. *Lack of errors is not
proof that everything worked correctly*

Naive use of read.table() generates an error because the default value of
sep=" " does not detect the missing value, which leads to one line having fewer
elements than the others (thus the error). Telling R to use a tab (sep="/t")
cures this problem because the missing value can now be detected, but there is
a missing value in the data (which is correct in this case).

We could just use read.delim() since it looks for tab-delimiters, but we may
need to specify the comment.char argument.

my.data <- read.delim("../Data/Ex2.txt", header = TRUE)
head(my.data)
my.data <- read.delim("../Data/Ex2.txt", header = TRUE,

comment.char = "#")↪→

my.data <- read.delim("../Data/Ex2.txt", header = TRUE, comm =
"#")↪→

dim(my.data)

8.6. SOME TYPICAL PROBLEMS 113

[1] 6 4

summary(my.data)

MeanDM DMn Jday
Min. :380.0 Min. :8 Min. :117
1st Qu.:610.8 1st Qu.:8 1st Qu.:137
Median :673.8 Median :8 Median :137
Mean :689.2 Mean :8 Mean :139
3rd Qu.:794.1 3rd Qu.:8 3rd Qu.:149
Max. :984.0 Max. :8 Max. :155
NA's :1
DMse
Min. :27.66
1st Qu.:29.31
Median :31.65
Mean :39.50
3rd Qu.:42.78
Max. :71.01
#

Can you see why the comm="#" was added?
Another common problem is adjacent empty cells in Excel - an empty cell has
had a value in it that has been deleted, and is not the same as a blank cell
4 .These will create an extra delimiter (tab or comma) in the text file, so all
rows won’t have the same number of values. A really good text editor will show
you this kind of error, but when in doubt reopen your .csv file in Excel, copy
only the data and paste it into a new tab and re-save it as a .csv file. The file
“Ex3.txt” includes an error like this. Note that when it is saved as a .csv file
this error is visible - this is why .csv files are preferred.
Another problem to watch for is leading quotes - in some cases Excel decides
that a line that is commented is actually text and wraps it in quotes. This is
invisible in Excel, so you don’t know it has happened. When read into R, the
leading " causes the comment character (by default #) to be ignored. You can
usually diagnose this if you open the .csv or .txt file in a text editor rather than
in Excel.

my.data <- read.table("../Data/Ex3.txt", header = TRUE)
my.data <- read.table("../Data/Ex3.txt", header = TRUE, sep =

"\t") # produces an error↪→

my.data <- read.delim("../Data/Ex3.txt", header = TRUE,
comment.char = "#") # no error↪→

head(my.data) # but wrong

4This is one example of why you should use R whenever possible!

114 CHAPTER 8. IMPORTING DATA

The first line did not produce an error, since the separator is " " (white space).
The second line produced an error because of the extra tab. The third line did
not give an error message but the data was not imported correctly - the extra
tab created a 5th column (with all NAs), but the 4 names were assigned to the
last 4 columns, and the values of MeanDM were used for row.names.

Note If you have numeric data that has thousands separators (e.g. 12,345,678)
then you will run into trouble using .csv files (with comma separators). There
are several ways to address this problem, but I think the easiest is to change
the number format in Excel before creating the .csv file. To do this highlight
the cells and choose “number” as the format.

8.7 Exercises

1) Find (or invent) some data (not from the “Data” directory supplied with
EssentialR) and import it into R. (It is not a bad idea to include a commented
line with units for each variable in your .txt or.csv file). a) What did you have
to do to “clean it up” so it would read in? b) Are you satisfied with the console
output of summary(yourdata)? Did all the variables import in the way (format)
you thought they should? c) Include the output of summary(yourdata) and
head(yourdata).

2) The spreadsheet “StatesData.xls” located in the Data directory in your Es-
sentialR folder contains some (old) data about the 50 US states, and includes a
plot with a regression line. Clean this data up and import it into R. You should
be able to fit a regression that mimics the plot in the spreadsheet. What is the
p-value for the slope in this regression?

Chapter 9

Manipulating Data

An introduction to data wrangling

9.1 Introduction

Often you find that your data needs to be reconfigured in some way. Perhaps
you recorded some measurement in two columns, but you realize it really should
be a single variable, maybe the total or mean of the two, or a single value
conditioned on another value. Or perhaps you want to make some summary
figures, like barplots, that need group means. Often you might be tempted to
do this kind of work in Excel because you already know how to do it. However,
if you already have the data in R, it is probably faster to do it in R! Even better,
when you do it in R it is really reproducible in a way that it is not in Excel.

9.2 Summarizing Data

Frequently we want to calculate data summaries - for example we want to plot
means and standard errors for several subsets of a data set 1. R has useful
tools that make this quite simple. We’ll look first that the apply() family of
functions, and then at the very useful aggregate(). Fist we’ll demonstrate with
some data from a study where beans were grown in different size containers 2. In
this study bean plants were grown in varying sized pots (pot.size) and either
one or two doses of phosphorus (P.lev), resulting in varying concentrations of
phosphorus (phos). Root length and root and shoot biomass were measured.

1Excel users will think “Pivot Table”.
2The data are a simplified form of that reported in: Nord, E. A., Zhang, C., and Lynch,

J. P. (2011). Root responses to neighboring plants in common bean are mediated by nutrient
concentration rather than self/non-self recognition. Funct. Plant Biol. 38, 941–952.

115

116 CHAPTER 9. MANIPULATING DATA

beans <- read.csv("Data/BeansData.csv", header = TRUE, comm =
"#",↪→

beans <- read.csv("../Data/BeansData.csv", header = TRUE,
comm = "#", stringsAsFactors = TRUE)

dim(beans)

[1] 24 8

summary(beans)

pot.size phos P.lev rep trt
Min. : 4 Min. : 70.0 H:12 A:6 a:4
1st Qu.: 4 1st Qu.:105.0 L:12 B:6 b:4
Median : 8 Median :175.0 C:6 c:4
Mean : 8 Mean :192.5 D:6 d:4
3rd Qu.:12 3rd Qu.:210.0 e:4
Max. :12 Max. :420.0 f:4
rt.len ShtDM RtDM
Min. :146.2 Min. :0.5130 Min. :0.4712
1st Qu.:243.3 1st Qu.:0.8065 1st Qu.:0.6439
Median :280.4 Median :1.0579 Median :0.7837
Mean :301.3 Mean :1.1775 Mean :0.8669
3rd Qu.:360.3 3rd Qu.:1.3159 3rd Qu.:0.9789
Max. :521.7 Max. :2.7627 Max. :1.7510

The “apply” family of functions are used to “do something over and over again
to a subset of some data” (apply a function to the data in R-speak). For example
we can get means for columns of data:

apply(X = beans[, 6:8], MARGIN = 2, FUN = mean, na.rm = TRUE)

rt.len ShtDM RtDM
301.3179167 1.1774750 0.8668583

Here we have applied the function mean() to the columns (MARGIN=2) 6,7,8
(6:8)of beans (columns 3,4, and 5 are factors, somean() will give an error,
causing apply(X=beans,MARGIN=2,FUN=mean,na.rm=TRUE) to fail).

Note that we’ve also specified na.rm=TRUE - this is actually an argument to
mean(), not to apply(). If you look at ?apply you’ll find ... among the
arguments. This refers to arguments that are passed to the function specified
by FUN. (which in this case is mean()). Many R functions allow ... arguments,
but they are initially confusing to new users.

9.2. SUMMARIZING DATA 117

In this case there is no missing data, but it is a worthwhile exercise to make a
copy of the beans data and introduce an NA so you know what happens when
there are missing values in the data.

Often we want to summarize data to get group means, for example we want the
means for each treatment type.

tapply(beans$rt.len, INDEX = list(beans$trt), FUN = mean,
na.rm = TRUE)

a b c d e f
255.2925 400.2000 178.8750 436.2800 226.7575 310.5025

In this case, it was easy because there was a variable (trt) that coded all the
treatments together, but we don’t really need it:

tapply(beans$rt.len, list(beans$pot.size, beans$P.lev), mean,
na.rm = TRUE)

H L
4 400.2000 255.2925
8 436.2800 178.8750
12 310.5025 226.7575

This gives us a tidy little table of means 3. If we just wanted a more straight-
forward list we can use paste() to make a combined factor.

tapply(beans$rt.len, list(paste(beans$pot.size, beans$P.lev)),
mean, na.rm = TRUE)

12 H 12 L 4 H 4 L 8 H 8 L
310.5025 226.7575 400.2000 255.2925 436.2800 178.8750

Often we really want to get summary data for multiple columns. The function
aggregate() is a convenience form of apply that makes this trivially easy.

In a call to aggregate() we must specify x=: the variable or variables to sum-
marize, by=: a list of one or more grouping variables that form the groups that
will be summarized, and FUN=,..., : the summarizing function to use, and .
additional arguments for the function specified in FUN=, such as na.rm=TRUE.

3If we were summarizing by three variables rather than two we would get 3-d matrix instead
of a 2-d table as output.

118 CHAPTER 9. MANIPULATING DATA

The following example will calculate means for three variables over groups de-
fined by two variables. As above, the na.rm=TRUE is an argument to mean().
Here I have used with(beans,) for this call to aggregate() simply to avoid
adding beans$ before each of the 5 variables named in this call.

with(beans, aggregate(x = cbind(rt.len, ShtDM, RtDM), by =
list(pot.size,↪→

phos), FUN = mean, na.rm = TRUE))

aggregate() is pretty flexible about how variables are passed to it. The follow-
ing will produce equivalent results, though sometimes with minor differences in
column names in the output

calling variables by number:
aggregate(x = beans[, 6:8], by = list(beans[, 1], beans[,

2]), FUN = mean, na.rm = TRUE)
aggregate(x = beans[, 6:8], by = beans[1:2], FUN = mean, na.rm =

TRUE) # most compact call and has correct names, but hard to
read.

↪→

↪→

calling variables by name, but adding different
variable names:
with(beans, aggregate(x = list(RL = rt.len, SDM = ShtDM, RDM =

RtDM),↪→

by = list(PotSize = pot.size, Phos = phos), FUN = mean,
na.rm = TRUE))

variables by name, w/o use of with()
aggregate(x = list(RL = beans$rt.len, SDM = beans$ShtDM, RDM =

beans$RtDM),↪→

by = list(PotSize = beans$pot.size, Phos = beans$phos),
FUN = mean, na.rm = TRUE)

aggregate(x = cbind(beans$rt.len, beans$ShtDM, beans$RtDM),
by = list(beans$pot.size, beans$phos), FUN = mean, na.rm =

TRUE)↪→

aggregate(x = data.frame(RL = beans$rt.len, SDM = beans$ShtDM,
RDM = beans$RtDM), by = list(PotSize = beans$pot.size,
Phos = beans$phos), FUN = mean, na.rm = TRUE)

but by= must be a list:
aggregate(x = data.frame(RL = beans$rt.len, SDM = beans$ShtDM,

RDM = beans$RtDM), by = cbind(PotSize = beans$pot.size,
Phos = beans$phos), FUN = mean, na.rm = TRUE)

Note that aggregate() also has a formula interface 4 which you may see used
4For the ‘formula’ form of aggregate() we specify x ~ g, data=, FUN=,..., where x is

the variable (or variables) to be summarized, g is the grouping variable (or variables), data=

9.2. SUMMARIZING DATA 119

on occasion. I don’t prefer it because it does not handle missing values as well
5.
We’ll also extract the standard deviations for each group.

with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =
list(PotSize = pot.size,↪→

Phos = phos), FUN = sd, na.rm = TRUE))

What if we want to specify a FUN that doesn’t exist in R? Simple - we write our
own. For example, we might want to calculate the standard error of the mean
(SEM) for our beans data.
Recall that the SEM is given by SEMx = σx√

(n)

with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =
list(PotSize = pot.size,↪→

Phos = phos), function(x) (sd(x, na.rm = TRUE)/(sum(is.na(x)
==↪→

FALSE))ˆ0.5)))

Notice this is the same as our first example using mean() except we’ve defined
a new function to calculate SEM. We could also begin by first defining a func-
tion: SEM=function(x){ }, with the definition of the function between the {}.
Having done that , and then just use FUN=SE in our call to aggregate (This code
is not run, but produces the same output).

SEM = function(x) {
sd(x, na.rm = TRUE)/(sum(is.na(x) == FALSE)ˆ0.5)

} # create function 'SEM'
with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =

list(PotSize = pot.size,↪→

Phos = phos), FUN = SEM))

This is a good example of something I have to look up in my “R Tricks”” file.
It is also an example of how lines of R code can get really long (and why auto
balancing of parentheses is really nice)! Adding spaces is OK. Also worth noting
in this example - since there is no na.rm=TRUE argument for length(), we need
to find another way to ensure any NA values aren’t counted in the denominator.
points to the data.frame containing our data. FUN= and ... are as noted above. A formula
call equivalent to the above would be: aggregate(cbind(rt.len,ShtDM,RtDM) ~ pot.size+phos,
data=beans,FUN=mean,na.rm=TRUE)

5When aggregate() is used with more than one variable before the ~ (i.e. when we use
cbind() before the ~), all cases (rows) containing an NA are removed, even if there is an NA
in only one of the variables being included. This can result in different output between the
x=,by=,FUN= and the x~g,data=,FUN= forms of aggregate().

120 CHAPTER 9. MANIPULATING DATA

It is easy to see how useful summaries like this could be - let’s make a plot from
this.

beans.means <- with(beans, aggregate(cbind(rt.len, ShtDM,
RtDM), by = list(PotSize = pot.size, Phos = phos), FUN =
mean,↪→

na.rm = TRUE))
barplot(beans.means$ShtDM)

0.
0

0.
5

1.
0

1.
5

If we don’t like the order of the bars here we can use the function order() to
sort our data (beans.means) for nicer plotting. order() is a bit confusing the
first time you see it - all it does is return the order the elements in a vector need
to be put in to be sorted. So, order(c(5,6,4)) will return 2,3,1. This means
that order() works wonderfully inside the [], because when placed there it
causes sorting to happen.

beans.means <- beans.means[order(beans.means$PotSize,
beans.means$Phos),↪→

]
barplot(beans.means$ShtDM)

9.2. SUMMARIZING DATA 121

0.
0

0.
5

1.
0

1.
5

Now we’ll add the labels and legend - we’ll discuss these in more detail in later
lessons.

barplot(beans.means$ShtDM,col=c("white","grey70"),names.arg=
paste(beans.means$PotSize,beans.means$Phos,sep="\n"),ylab=
"Shoot biomass (g)")

legend("topright",fill=c("white","grey70"),legend=c("LP","HP"))

4
210

4
420

8
105

8
210

12
70

12
140

S
ho

ot
 b

io
m

as
s

(g
)

0.
0

0.
5

1.
0

1.
5

LP
HP

122 CHAPTER 9. MANIPULATING DATA

You can see that R gives us powerful tools for data manipulation.

9.3 Reformatting Data from “Wide” to “Long”

Sometimes we record and enter data in a different format than that in which we
wish to analyze it. For example, I might record the biomass from each of several
replicates of an experiment in separate columns for convenience. But when I
want to analyze it, I need biomass as a single column, with another column for
replicate. Or perhaps I have biomass as a single column and want to break it
into separate columns. The R functions stack() and unstack() are a good
place to begin.

data(PlantGrowth)
head(PlantGrowth)

We have 2 variables: weight and group. We can use unstack() to make one
column for each level of group.

unstack(PlantGrowth)
pg <- unstack(PlantGrowth, weight ~ group)
boxplot(pg)

ctrl trt1 trt2

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

This can be useful for plotting (though in this case boxplot(weight~group,data=PlantGrowth)
would work equally well). We can use stack() to go the other way.

9.3. REFORMATTING DATA FROM “WIDE” TO “LONG” 123

summary(stack(pg))

values ind
Min. :3.590 ctrl:10
1st Qu.:4.550 trt1:10
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310

summary(stack(pg, select = c(trt1, trt2)))

values ind
Min. :3.590 trt1:10
1st Qu.:4.620 trt2:10
Median :5.190
Mean :5.093
3rd Qu.:5.605
Max. :6.310

summary(stack(pg, select = -ctrl))

values ind
Min. :3.590 trt1:10
1st Qu.:4.620 trt2:10
Median :5.190
Mean :5.093
3rd Qu.:5.605
Max. :6.310

Notice that we can use the select argument to specify or exclude columns when
we stack.

Suppose we’re interested in comparing any treatment against the control with
the PlantGrowth data. We’ve already seen how this can be done using the
function levels(). There are three levels, but if we reassign one of them we
can make 2 levels.

levels(PlantGrowth$group)

[1] "ctrl" "trt1" "trt2"

124 CHAPTER 9. MANIPULATING DATA

PlantGrowth$group2 <- factor(PlantGrowth$group)
levels(PlantGrowth$group2) <- c("Ctrl", "Trt", "Trt")
summary(PlantGrowth)

weight group group2
Min. :3.590 ctrl:10 Ctrl:10
1st Qu.:4.550 trt1:10 Trt :20
Median :5.155 trt2:10
Mean :5.073
3rd Qu.:5.530
Max. :6.310

unstack(PlantGrowth, weight ~ group2)

$Ctrl
[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14
#
$Trt
[1] 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69
[11] 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26

We can even use unstack() to split weight based on group2, but the output
is different as the groups aren’t balanced.

9.4 Reshape

For more sophisticated reshaping of data the package “reshape” 6 has power-
ful tools to reshape data in many ways, but it takes some time to read the
documentation and wrap your head around how it works and what it can do.
Basically there are 2 functions here - melt() and cast() (think working with
metal) - once you ‘melt’ the data you can ‘cast’ it into any shape you want.
melt() turns a data set into a series of observations which consist of a variable
and value, and dcast() reshapes melted data, ‘casting’ it into a new form. You
will probably need to install reshape - either from the ‘Packages’ tab or via
install.packages("reshape")7. We’ll demonstrate with the built in data set
iris, and we’ll need to create a unique identifier for each case in the data set.

6Not to be confused with reshape2, by the same author. There are some differences
between the original reshape and the newer reshape2 - the newer version is much faster for
large datasets, but does not have quite all the funcitonality of reshape.

7Do recall that you need to then load the package either via library(reshape), or via
RStudio’s packages pane. Note that if you are using knitr, you will need to include the code
to load the package (e.g. library(reshape)) in you file, since it will need to be loaded into
the clean workspace where knitr evaluates the code.

9.4. RESHAPE 125

library(reshape)
data(iris)
iris$id <- row.names(iris)
head(melt(iris, id = "id"))
tail(melt(iris, id = "id"))
melt.iris <- melt(iris, id = c("id", "Species"))
dim(melt.iris)

[1] 600 4

head(melt.iris)
tail(melt.iris)

Now instead of 150 observations with 6 variables we have 600 observations with
4 variables. We can cast this data using cast(). If we specify enough columns
from our melted data to account for all the data, then we don’t need to specify
a fun.aggregate - a function with which to aggregate, but we can aggregate
the data easily,and with more flexibility than by using aggregate:

cast(melt.iris, Species ~ variable, mean)
cast(melt.iris, Species ~ variable, max)

We can get our original data back.

head(cast(melt.iris, Species + id ~ variable))

But we can also do other types of reshaping. For example, what if we wanted to
separate out Sepal and Petal variables for each record? We can use strplit()
to split the stings that represent variables, e.g. “Sepal.Width”.

head(strsplit(as.character(melt.iris$variable), split = ".",
fixed = TRUE))

[[1]]
[1] "Sepal" "Length"
#
[[2]]
[1] "Sepal" "Length"
#
[[3]]
[1] "Sepal" "Length"

126 CHAPTER 9. MANIPULATING DATA

#
[[4]]
[1] "Sepal" "Length"
#
[[5]]
[1] "Sepal" "Length"
#
[[6]]
[1] "Sepal" "Length"

Notice that this returns a list. We’ll have to use do.call() to call rbind() on
the list to bind the list elements into a data frame.

head(do.call(rbind, strsplit(as.character(melt.iris$variable),
split = ".", fixed = TRUE)))

[,1] [,2]
[1,] "Sepal" "Length"
[2,] "Sepal" "Length"
[3,] "Sepal" "Length"
[4,] "Sepal" "Length"
[5,] "Sepal" "Length"
[6,] "Sepal" "Length"

Now this seems a bit esoteric, but we can use cbind() to bind these values to
our melted iris data

melt.iris <- cbind(melt.iris, do.call(rbind,
strsplit(as.character(melt.iris$variable),↪→

split = ".", fixed = TRUE)))
names(melt.iris)[5:6] <- c("Part", "Dimension")
head(melt.iris)

Now we can see that we have separated the flower parts (Sepal or Petal) from
the dimensions.

cast(melt.iris, Species ~ Dimension | Part, mean)

$Petal
Species Length Width
1 setosa 1.462 0.246
2 versicolor 4.260 1.326
3 virginica 5.552 2.026

9.5. MERGING DATA SETS 127

#
$Sepal
Species Length Width
1 setosa 5.006 3.428
2 versicolor 5.936 2.770
3 virginica 6.588 2.974

cast(melt.iris, Species ~ Dimension + Part, mean)

So we can talk about the mean Length and Width, averaged over floral parts.
In this case it may not make sense to do so, but it demonstrates the type of
data reconfiguration that is possible.

cast(melt.iris, Species ~ Dimension, mean)

We can still go back to the original data by just casting the data in a different
form:

head(cast(melt.iris, Species + id ~ Part + Dimension))

The package reshape adds important tools to the R data manipulation toolkit.
While they may be a bit tricky to learn, they are very powerful. See ?cast for
more examples.

9.5 Merging Data Sets

Another data manipulation task is merging two data sets together. Perhaps you
have field and laboratory results in different files, and you want to merge them
into one file. Here we’ll use an example from the merge() help file.

authors <- data.frame(surname = c("Tukey", "Venables", "Tierney",
"Ripley", "McNeil"), nationality = c("US", "Australia",
"US", "UK", "Australia"), deceased = c("yes", rep("no",
4)))

books <- data.frame(name = c("Tukey", "Venables", "Tierney",
"Ripley", "Ripley", "McNeil", "R Core"), title = c("Expl.

Data Anal.",↪→

"Mod. Appl. Stat ...", "LISP-STAT", "Spatial Stat.", "Stoch.
Simu.",↪→

"Inter. Data Anal.", "An Intro. to R"), other.author = c(NA,
"Ripley", NA, NA, NA, NA, "Venables & Smith"))

authors
books

128 CHAPTER 9. MANIPULATING DATA

We’ve created 2 small data frames for demonstration purposes here. Now we
can use merge() to merge them.

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))

Notice that the order of the columns mirrors the order of columns in the function
call - in the first line we asked for authors,books and the columns are the
three columns of authors and the all but the first column of books, because
that column (name) is the by.y column. If both data frames had the column
surname we could just say by=surname. Notice that “R core” (books[7,]) is
not included in the combined data frame - this is because it does not exist in
both of them. We can override this, but NAs will be introduced. Also note that
by, by.x and by.y can be vectors of more than one variable -useful for complex
data sets.

merge(authors, books, by.x = "surname", by.y = "name", all =
TRUE)↪→

This is a good example of something that is much easier to do in R than in
Excel.

9.6 More about Loops

Sometimes we want to have R do something over and over again. Often a loop
is the simplest 8 way to do this. AS we saw earlier the general syntax for a loop
in R is: for(index) {do something}.

The curly braces are optional if it fits on one line, but required if it goes over
one line.

Here are a couple of examples:

for (i in 1:5) print(i)

[1] 1
[1] 2
[1] 3
[1] 4
[1] 5

8Though possibly not the fastest - advanced R users will sometimes say that you should
use an apply() function rather than a loop because it will run faster. This is probably only
a real concern if you have very large data sets.

9.6. MORE ABOUT LOOPS 129

x <- c(2, 5, 7, 23, 6)
for (i in x) {

cat(paste("iˆ2=", iˆ2, "\n"))
}

i^2= 4
i^2= 25
i^2= 49
i^2= 529
i^2= 36

Another example might be converting multiple numeric columns to factors.
Imagine we wanted to convert columns 3,5,and 6 of a data frame from numeric
to factor. We could run (nearly) the same command three times:

df[,3]=factor(df[,3]); df[,5]=factor(df[,5]);
df[,6]=factor(df[,6]);

However, particularly if we have more than two columns that need to be con-
verted it may be easier to use a loop - just use the vector of the columns to be
converted as the index:

for(i in c(3,5,6)) df[,i]<-factor(df[,i])

Loops can be used in many ways - for example the code we used to plot shoot
biomass could be put in a loop to plot all the response variables in the data.

par(mfrow=c(3,1),mar=c(3,3,0.5,0.5))
for (p in c(4,5,3)){

barplot(beans.means[,p],col=rep(c("white","grey70"),times=3),

names.arg=paste(beans.means$PotSize,beans.means$Phos,sep="\n"))↪→

plot the pth column of beans.means
}

130 CHAPTER 9. MANIPULATING DATA

4
210

4
420

8
105

8
210

12
70

12
140

0.
0

1.
0

4
210

4
420

8
105

8
210

12
70

12
140

0.
0

0.
6

4
210

4
420

8
105

8
210

12
70

12
140

0
20

0

Obviously, this plot isn’t perfect yet, but it is good enough to be useful. Note -
by convention, the code inside a loop is indented to make it easier to see where
a loop begins and ends.

9.7 Exercises

1) Load the data set “ufc” (the file is ufc.csv). This data shows diameter at
breast height (Dbh) and Height for forest trees. Can you use unstack() to
get the diameter data for white pine (WP)? Start by unstacking all the diameter
data. Can you also get this data by logical extraction? (Hint: use the function
which(). If you really only wanted the data for one species logical extraction
would probably be better.)

2) For the data set ufc find the mean Dbh and Height for each species. (Hint:
aggregate is your friend for more than one response variable.)

3) Make a barplot showing these mean values for each species. Use beside
=TRUE (stacking two different variables wouldn’t make sense. . .). (Hint: this
will be easier if you make a new variable for the means from Q2. Look at
?barplot for the data type “height” must have - as.matrix() can be used to
make something a matrix.)

4) The barplot in Q3 suggests a fair correlation between Dbh and height. Plot
Height~DBH, fit a regression, and plot the line. What is the R2?

Chapter 10

Working with multiple
variables

Some basic tools for multivariate data

10.1 Introduction

Now that we’ve discussed the data frame in R, and seen how data can be im-
ported, we can begin to practice working with multiple variables. Rather than
a full introduction to multivariate methods, here we’ll cover some basic tools.

10.2 Working with Multivariate Data

Working with more than two variables becomes more complex, but many of the
tools we’ve already learned can also help us here. We’ll use the mtcars data we
referred to in the Chapters 4 & 5, but now we’ll load it directly.

data(mtcars)
summary(mtcars)

mpg cyl disp
Min. :10.40 Min. :4.000 Min. : 71.1
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8
Median :19.20 Median :6.000 Median :196.3
Mean :20.09 Mean :6.188 Mean :230.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0

131

132 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

Max. :33.90 Max. :8.000 Max. :472.0
hp drat wt
Min. : 52.0 Min. :2.760 Min. :1.513
1st Qu.: 96.5 1st Qu.:3.080 1st Qu.:2.581
Median :123.0 Median :3.695 Median :3.325
Mean :146.7 Mean :3.597 Mean :3.217
3rd Qu.:180.0 3rd Qu.:3.920 3rd Qu.:3.610
Max. :335.0 Max. :4.930 Max. :5.424
qsec vs am
Min. :14.50 Min. :0.0000 Min. :0.0000
1st Qu.:16.89 1st Qu.:0.0000 1st Qu.:0.0000
Median :17.71 Median :0.0000 Median :0.0000
Mean :17.85 Mean :0.4375 Mean :0.4062
3rd Qu.:18.90 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :22.90 Max. :1.0000 Max. :1.0000
gear carb
Min. :3.000 Min. :1.000
1st Qu.:3.000 1st Qu.:2.000
Median :4.000 Median :2.000
Mean :3.688 Mean :2.812
3rd Qu.:4.000 3rd Qu.:4.000
Max. :5.000 Max. :8.000

If you look at the “Environment” tab in RStudio you should now see mtcars
under “Data”. We’ll convert some of this data to factors, since as we discussed
before, the number of cylinders, transmission type (and number of carburetors,
V/S, and number of forward gears) aren’t really continuous.

for (i in c(2, 8, 9, 10, 11)) {
mtcars[, i] = factor(mtcars[, i])

}
names(mtcars)[9] <- "trans"
levels(mtcars$trans) <- c("auto", "manual")
summary(mtcars)

mpg cyl disp hp
Min. :10.40 4:11 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 6: 7 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 8:14 Median :196.3 Median :123.0
Mean :20.09 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :472.0 Max. :335.0
drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 0:18
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1:14

10.2. WORKING WITH MULTIVARIATE DATA 133

Median :3.695 Median :3.325 Median :17.71
Mean :3.597 Mean :3.217 Mean :17.85
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
Max. :4.930 Max. :5.424 Max. :22.90
trans gear carb
auto :19 3:15 1: 7
manual:13 4:12 2:10
5: 5 3: 3
4:10
6: 1
8: 1

Notice the for(){} loop here; just as we saw in the last chapter this is faster
than writing 5 lines of code. I prefer to have informative factor names, so we’ll
change that, and then check summary() to make sure it is all OK.

Note that we could achieve the same result using the list version of apply(),
lapply(). This will run faster, but the code is slightly longer than the loop
version above.

mtcars[, c(2, 8, 9, 10, 11)] <- lapply(mtcars[, c(2, 8, 9,
10, 11)], FUN = function(x) (factor(x)))

In the last lesson we used table() for two-way tables, but we can also use it
for three-way tables.

with(mtcars, table(carb, cyl, trans))

, , trans = auto
#
cyl
carb 4 6 8
1 1 2 0
2 2 0 4
3 0 0 3
4 0 2 5
6 0 0 0
8 0 0 0
#
, , trans = manual
#
cyl
carb 4 6 8
1 4 0 0

134 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

2 4 0 0
3 0 0 0
4 0 2 1
6 0 1 0
8 0 0 1

This give us bit more insight - cars with automatic transmissions don’t seem to
have more than 4 carburetors, but cars with manual transmissions might have
as many as 8, but not more carburetors than cylinders.

Another tool that is often useful to explore multivariate data is the “pairs plot”,
which shows correlations for all pairs. Since we have 3 factors here, lets exclude
them so we can focus on the numeric variables.

pairs(mtcars[, -c(2, 8, 9, 10, 11)])

mpg

10
0

40
0

3.
0

4.
5

10 20 30

16
20

100 300

disp

hp

50 150 300

3.0 4.0 5.0

drat

wt

2 3 4 5

16 20

10
25

50
20

0
2

4

qsec

Now we can see what patterns of correlation exist in this dataset. Fuel economy
(“mpg”) is relatively well correlated (negatively) with displacement, though per-
haps not in a linear fashion. Quarter-mile time (qsec) is not strongly correlated
with any of the other variables (but there may be a weak negative correlation
with hp, which stands to reason).

10.2. WORKING WITH MULTIVARIATE DATA 135

10.2.1 Lattice Graphics

The “Lattice” package includes nice functionality for making plots conditioned
on a third variable. Either use install.packages ("lattice") if your
are connected to the internet or install.packages (repos=NULL, type =
"source", pkgs = file.choose()) and select the package file for “lattice”.
Remember that to use it you have to load it: library (lattice)

Alternately, you can go to the “Packages” tab in RStudio and click “Install
Packages”. Note that while you should only need to install a package once, you
will need to load it (via the function library()) each session that you wish to
use it - this is to keep R from getting to bloated.

The lattice package has functions that plot data conditioned on another vari-
able, which is specified by the | operator.

histogram(~hp | cyl, data = mtcars)

hp

P
er

ce
nt

 o
f T

ot
al

0
20
40
60
80

50 150 300

4

50 150 300

6

50 150 300

8

bwplot(~hp | cyl, data = mtcars)

136 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

hp

50 150 250

4

50 150 250

6

50 150 250

8

xyplot(mpg ~ disp | trans, data = mtcars)

disp

m
pg

10
15
20
25
30
35

100 200 300 400

auto

100 200 300 400

manual

10.2.2 EXTRA: Customizing Lattice Plots

By defining custom functions, we can customize lattice plots. Here we’ll define
a custom function using panel. functions from lattice. The actual definition
of the function is simple, knowing the pieces needed to define this particular
function is less so.

plot.regression = function(x, y) {
panel.xyplot(x, y)

10.3. AN EXAMPLE 137

panel.abline(lm(y ~ x))
}
xyplot(mpg ~ wt | gear, panel = plot.regression, data = mtcars)

wt

m
pg

10
15
20
25
30
35

2 3 4 5

3

2 3 4 5

4

2 3 4 5

5

10.3 An Example

For example let us consider some data from the pilot study on root anatomy
that we looked at in the last chapter. 123 root cross sections were analyzed
for a suite of 9 anatomical traits. There are several sources of variation here
- samples are from different genotypes (12), grown in different media (2), and
from different locations in the root system (2).

In the last chapter we saw how to covert several columns to factors, how to
change factor levels, and how to calculate new variables.

getwd() ## mine is 'EssentialR/Chapters', YMMV

[1] "/Users/enord/Dropbox/R_Class/EssentialR/Chapters"

anat <- read.table("../Data/anatomy-pilot-simple.txt", header =
TRUE,↪→

sep = "\t", stringsAsFactors = TRUE)
summary(anat)

Gtype media.rep sample Loc
C :12 r1:31 Min. :1.000 L1:60

138 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

D :12 R1:29 1st Qu.:1.000 L2:63
F :12 r2:32 Median :2.000
G :12 R2:31 Mean :1.943
I :12 3rd Qu.:3.000
B :11 Max. :3.000
(Other):52
RSXA.mm2 TCA.mm2 AA.mm2
Min. :0.0681 Min. :0.0545 Min. :0.0057
1st Qu.:0.9682 1st Qu.:0.7560 1st Qu.:0.1153
Median :1.1354 Median :0.9045 Median :0.2073
Mean :1.1225 Mean :0.8881 Mean :0.2098
3rd Qu.:1.2789 3rd Qu.:1.0176 3rd Qu.:0.2837
Max. :1.6347 Max. :1.3882 Max. :0.5084
#
Cort.Cell.Num XVA.mm2 Per.A
Min. : 510 Min. :0.00240 Min. : 1.36
1st Qu.:1542 1st Qu.:0.04080 1st Qu.:15.43
Median :1817 Median :0.04960 Median :23.26
Mean :1857 Mean :0.05079 Mean :22.89
3rd Qu.:2136 3rd Qu.:0.06070 3rd Qu.:29.31
Max. :3331 Max. :0.08990 Max. :46.26
#
CellSize.1 CellSize.2
Min. :0.0000610 Min. :0.0000680
1st Qu.:0.0003300 1st Qu.:0.0003025
Median :0.0004830 Median :0.0005520
Mean :0.0006254 Mean :0.0007299
3rd Qu.:0.0008675 3rd Qu.:0.0009215
Max. :0.0017030 Max. :0.0036640
#
CellSize.3 CellSize.4
Min. :0.0000470 Min. :0.0000280
1st Qu.:0.0001610 1st Qu.:0.0001150
Median :0.0001950 Median :0.0001390
Mean :0.0002052 Mean :0.0001400
3rd Qu.:0.0002380 3rd Qu.:0.0001615
Max. :0.0004380 Max. :0.0002710
#
Comments
:98
mc :13
wried anatomy: 3
blur image : 2
a little blur: 1
dull blade : 1
(Other) : 5

10.3. AN EXAMPLE 139

anat[, 3] <- factor(anat[, 3])
cols 3 to factor
levels(anat$media.rep) <- c("R1", "R1", "R2", "R2")
r1,2 to R1,2
anat$CellSize.avg <- rowMeans(anat[, 11:14]) # avgCellSize
anat$m.Loc <- factor(paste(anat$media.rep, anat$Loc))
combined levels

We’ve fixed that. Now that we have estimates for average CellSize let’s remove
the original cell size values as well as the comments column.

anat <- anat[, -(11:15)]
names(anat)

[1] "Gtype" "media.rep" "sample"
[4] "Loc" "RSXA.mm2" "TCA.mm2"
[7] "AA.mm2" "Cort.Cell.Num" "XVA.mm2"
[10] "Per.A" "CellSize.avg" "m.Loc"

summary(anat)

Gtype media.rep sample Loc RSXA.mm2
C :12 R1:60 1:43 L1:60 Min. :0.0681
D :12 R2:63 2:44 L2:63 1st Qu.:0.9682
F :12 3:36 Median :1.1354
G :12 Mean :1.1225
I :12 3rd Qu.:1.2789
B :11 Max. :1.6347
(Other):52
TCA.mm2 AA.mm2 Cort.Cell.Num
Min. :0.0545 Min. :0.0057 Min. : 510
1st Qu.:0.7560 1st Qu.:0.1153 1st Qu.:1542
Median :0.9045 Median :0.2073 Median :1817
Mean :0.8881 Mean :0.2098 Mean :1857
3rd Qu.:1.0176 3rd Qu.:0.2837 3rd Qu.:2136
Max. :1.3882 Max. :0.5084 Max. :3331
#
XVA.mm2 Per.A CellSize.avg
Min. :0.00240 Min. : 1.36 Min. :0.0000510
1st Qu.:0.04080 1st Qu.:15.43 1st Qu.:0.0002739
Median :0.04960 Median :23.26 Median :0.0003802
Mean :0.05079 Mean :22.89 Mean :0.0004251
3rd Qu.:0.06070 3rd Qu.:29.31 3rd Qu.:0.0005346

140 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

Max. :0.08990 Max. :46.26 Max. :0.0012030
#
m.Loc
R1 L1:29
R1 L2:31
R2 L1:31
R2 L2:32
#
#
#

We’re down to 12 variables, but this is probably too many for a pairs plot. We’ll
exclude the first 4 variables as they are factors.

pairs(anat[, -(1:4)])

RSXA.mm2

0.
2

1.
2

50
0

0
30

0.5 1.5

1.
0

3.
5

0.2 1.0

TCA.mm2

AA.mm2

0.0 0.3

500 2500

Cort.Cell.Num

XVA.mm2

0.00 0.06

0 20 40

Per.A

CellSize.avg

0.0002 0.0012

1.0 2.5 4.0

0.
5

0.
0

0.
4

0.
00

0.
00

02

m.Loc

That is a useful figure that permits us to quickly see how seven variables are
related to each other. What would happen if we used pairs(anat)? For more
variables than 7 or 8 the utility of such a figure probably declines. We can see
that RXSA (cross section area) is tightly correlated with TCA (cortical area),
and that AA (aerenchyma area) is correlated with Per.A (aerenchyma area as
percent of cortex). These are not surprising, as they are mathematically related.

10.4. PCA 141

XVA (xylem vessel area) does not seem to be strongly correlated with any other
measure. Per.A (Cortical aerenchyma as percent of root cortex) is correlated
with average cell size (which is interesting if you are a root biologist!).

Sometimes it is useful to enlarge a plot to see it better - especially if it is a
complex one like this pairs plot. In RStudio, you can click the “zoom” button
above the plots to enlarge a plot for viewing.

We can also use the function by() for multi-way data summaries over factor
variables.

by(data = anat[, 7:10], INDICES = list(anat$media.rep, anat$Loc),
FUN = colMeans)

: R1
: L1
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
1.712069e-01 1.808207e+03 4.722414e-02 2.038428e+01
--
: R2
: L1
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
1.368774e-01 1.740452e+03 4.993548e-02 1.864896e+01
--
: R1
: L2
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
2.577355e-01 2.009871e+03 5.344839e-02 2.447344e+01
--
: R2
: L2
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
2.688344e-01 1.865281e+03 5.228438e-02 2.772134e+01

Note that if we are including more than one factor in the argument INDICES
they must be in a list() - the syntax is similar to that for aggregate() that
we saw in chapter 9.

10.4 PCA

Since we live in a three dimensional world, our perceptual ability can generally
cope with three dimensions, but we often have difficult time visualizing or un-
derstanding higher dimensional problems. Principal Components Analysis, or
PCA, is a tool for reducing the dimensions of a data set.

142 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

In the most basic terms, PCA rotates the data cloud to produce new axes, or
dimensions, that maximize the variability. These are the main axes of variation
in the data, or the “Principal Components”. They can be related to the original
variables only by rotation. Here is an example with the mtcars data:

data(mtcars)
pca1 <- prcomp(mtcars, center = TRUE, scale. = TRUE)
summary(pca1)

Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 2.5707 1.6280 0.79196 0.51923
Proportion of Variance 0.6008 0.2409 0.05702 0.02451
Cumulative Proportion 0.6008 0.8417 0.89873 0.92324
PC5 PC6 PC7 PC8
Standard deviation 0.47271 0.46000 0.3678 0.35057
Proportion of Variance 0.02031 0.01924 0.0123 0.01117
Cumulative Proportion 0.94356 0.96279 0.9751 0.98626
PC9 PC10 PC11
Standard deviation 0.2776 0.22811 0.1485
Proportion of Variance 0.0070 0.00473 0.0020
Cumulative Proportion 0.9933 0.99800 1.0000

screeplot(pca1)

10.4. PCA 143

pca1

V
ar

ia
nc

es

0
1

2
3

4
5

6

biplot(pca1)

144 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

−0.2 0.0 0.2 0.4

−
0.

2
0.

0
0.

2
0.

4

PC1

P
C

2

Mazda RX4Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280Merc 280C
Merc 450SEMerc 450SLMerc 450SLCCadillac FleetwoodLincoln Continental

Chrysler ImperialFiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge ChallengerAMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L
Ferrari Dino

Maserati Bora

Volvo 142E

−4 −2 0 2 4 6 8

−
4

−
2

0
2

4
6

8

mpg cyl

disp

hpdrat

wt

qsec

vs

am
gear

carb

pca1$rotation

PC1 PC2 PC3 PC4
mpg -0.3625305 0.01612440 -0.22574419 -0.022540255
cyl 0.3739160 0.04374371 -0.17531118 -0.002591838
disp 0.3681852 -0.04932413 -0.06148414 0.256607885
hp 0.3300569 0.24878402 0.14001476 -0.067676157
drat -0.2941514 0.27469408 0.16118879 0.854828743
wt 0.3461033 -0.14303825 0.34181851 0.245899314
qsec -0.2004563 -0.46337482 0.40316904 0.068076532
vs -0.3065113 -0.23164699 0.42881517 -0.214848616
am -0.2349429 0.42941765 -0.20576657 -0.030462908
gear -0.2069162 0.46234863 0.28977993 -0.264690521
carb 0.2140177 0.41357106 0.52854459 -0.126789179
PC5 PC6 PC7 PC8

10.4. PCA 145

mpg 0.10284468 -0.10879743 0.367723810 -0.754091423
cyl 0.05848381 0.16855369 0.057277736 -0.230824925
disp 0.39399530 -0.33616451 0.214303077 0.001142134
hp 0.54004744 0.07143563 -0.001495989 -0.222358441
drat 0.07732727 0.24449705 0.021119857 0.032193501
wt -0.07502912 -0.46493964 -0.020668302 -0.008571929
qsec -0.16466591 -0.33048032 0.050010522 -0.231840021
vs 0.59953955 0.19401702 -0.265780836 0.025935128
am 0.08978128 -0.57081745 -0.587305101 -0.059746952
gear 0.04832960 -0.24356284 0.605097617 0.336150240
carb -0.36131875 0.18352168 -0.174603192 -0.395629107
PC9 PC10 PC11
mpg 0.235701617 0.13928524 -0.124895628
cyl 0.054035270 -0.84641949 -0.140695441
disp 0.198427848 0.04937979 0.660606481
hp -0.575830072 0.24782351 -0.256492062
drat -0.046901228 -0.10149369 -0.039530246
wt 0.359498251 0.09439426 -0.567448697
qsec -0.528377185 -0.27067295 0.181361780
vs 0.358582624 -0.15903909 0.008414634
am -0.047403982 -0.17778541 0.029823537
gear -0.001735039 -0.21382515 -0.053507085
carb 0.170640677 0.07225950 0.319594676

Notice:

1. prcomp() requires numeric variables only; we must exclude any non-
numeric variables in the data.

2. Because the variables may be scaled differently, it is almost always nec-
essary to subtract the mean and scale by the standard deviation, so all
variables share the same scale, hence the arguments center and scale.
For more evidence see the next code block.

3. summary() on an object of type prcomp gives us a brief description of the
principal components. Here we see that there are 11 PCs - the full number
of PCs is always the number of dimensions in the data, in this case 11.

4. The “reduction of dimensions” can be seen in the “Cumulative Proportion”
row - the first three PCs explain about 90% of the variation in the data,
so we can consider three rather than 11 variables (although those three
represent a synthesis of all 11). The screeplot() is basically a barplot
of the the proportion of variance explained. This data set is rather nicely
behaved, the first 2 or 3 PCs capture most of the variation. This is not
always the case.

146 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

5. The rotation, sometimes called “loadings” shows the contribution of each
variable to each PC. Note that the signs (directions) are arbitrary here.

6. PCA is often visualized with a “biplot”, in which the data points are
visualized in a scatterplot of the first two PCs, and the original variables
are also drawn in relation to the first two PCs. Here one can see that
vehicle weight (wt) is rather well correlated with number of cylinders and
displacement, but that fuel economy (mpg) in inversely correlated with
number of cylinders and displacement. Variables that are orthogonal are
not well correlated - forward gears (gear) and horsepower (hp). In this
case the first 2 PCs explain about 85% of the variation in the data, so
these relationships between variables are not absolute.

wrong.pca <- prcomp(mtcars)
summary(wrong.pca)

Importance of components:
PC1 PC2 PC3 PC4
Standard deviation 136.533 38.14808 3.07102 1.30665
Proportion of Variance 0.927 0.07237 0.00047 0.00008
Cumulative Proportion 0.927 0.99937 0.99984 0.99992
PC5 PC6 PC7 PC8
Standard deviation 0.90649 0.66354 0.3086 0.286
Proportion of Variance 0.00004 0.00002 0.0000 0.000
Cumulative Proportion 0.99996 0.99998 1.0000 1.000
PC9 PC10 PC11
Standard deviation 0.2507 0.2107 0.1984
Proportion of Variance 0.0000 0.0000 0.0000
Cumulative Proportion 1.0000 1.0000 1.0000

screeplot(wrong.pca)

10.4. PCA 147

wrong.pca

V
ar

ia
nc

es

0
50

00
10

00
0

15
00

0

biplot(wrong.pca)

148 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

−0.6 −0.4 −0.2 0.0 0.2

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2

PC1

P
C

2

Mazda RX4Mazda RX4 Wag
Datsun 710

Hornet 4 Drive

Hornet SportaboutValiant

Duster 360

Merc 240D

Merc 230

Merc 280Merc 280CMerc 450SEMerc 450SLMerc 450SLC

Cadillac Fleetwood

Lincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic
Toyota Corolla

Toyota Corona

Dodge Challenger
AMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9Porsche 914−2

Lotus Europa

Ford Pantera L
Ferrari Dino

Maserati Bora

Volvo 142E

−1500 −1000 −500 0 500

−
15

00
−

10
00

−
50

0
0

50
0

mpgcyl
disp

hp

dratwtqsecvsamgearcarb

To highlight the importance of scaling, we demonstrate here the unscaled pca of
the mtcars data. Note that for the unscaled wrong.pca the first 2 PCs explain
nearly all the variance - this is simply because a small number (2) of variables
are scaled much “larger” than the others and so contribute a much larger share
of the variance. A look at summary(mtcars) should show you that re-scaling
mpg, disp, and hp (simply dividing by 10, 100, and 100, respectively) would
yield a different pca than the original scaled pca - I leave it for you to test.

10.5 Clustering

Another way to look at multivariate data is to ask how data points may be
related to each other. A glance at the biplot above shows that there are some
small clusters of data points. There are a number of ways to approach this ques-
tion. Here we’ll demonstrate hierarchical clustering. This begins by finding the
points that are “closest” to each other. In R “Closeness” is actually calculated

10.5. CLUSTERING 149

by the function dist() and can be defined various ways - the simplest is the
euclidean distance, but there are other options also (see ?dist). Data points are
then grouped into clusters based on their “closeness” (or distance), and (as you
might expect by now) there are different methods of grouping (“agglomeration”)
supported - see ?hclust for more.

Now we can use dist() and hclust() to cluster the data. However, as we saw
with PCA, differences in variable scaling can be very important. We can use
the function scale() to scale and center the data before clustering. As with
PCA, it is instructive to compare the this dendrogram with that derived from
unscaled data (again, I leave this to the reader).

plot(hclust(dist(scale(mtcars))))

H
or

ne
t 4

 D
riv

e
V

al
ia

nt
M

er
c

28
0

M
er

c
28

0C
To

yo
ta

 C
or

on
a

M
er

c
24

0D
M

er
c

23
0

P
or

sc
he

 9
14

−
2

Lo
tu

s
E

ur
op

a
D

at
su

n
71

0
V

ol
vo

 1
42

E
H

on
da

 C
iv

ic
F

ia
t X

1−
9

F
ia

t 1
28

To
yo

ta
 C

or
ol

la
C

hr
ys

le
r

Im
pe

ria
l

C
ad

ill
ac

 F
le

et
w

oo
d

Li
nc

ol
n

C
on

tin
en

ta
l

D
us

te
r

36
0

C
am

ar
o

Z
28

M
er

c
45

0S
LC

M
er

c
45

0S
E

M
er

c
45

0S
L

H
or

ne
t S

po
rt

ab
ou

t
P

on
tia

c
F

ire
bi

rd
D

od
ge

 C
ha

lle
ng

er
A

M
C

 J
av

el
in

F
er

ra
ri

D
in

o
M

az
da

 R
X

4
M

az
da

 R
X

4
W

ag
F

or
d

P
an

te
ra

 L
M

as
er

at
i B

or
a0

4
8

Cluster Dendrogram

hclust (*, "complete")
dist(scale(mtcars))

H
ei

gh
t

Note that the three Merc 450 models cluster together, and the Cadillac Fleet-
wood and Lincoln Continental also cluster. The dendrogram for the unscaled
data makes less sense (though if you don’t happen to remember cars from 1973
it is possible that none of these clusters look “right” to you).

10.5.1 Plotting a dendrogram horizontally.

If we want to view the dendrogram printed horizontally, we have to save our
hclust object and create a dendrogram object from it. We’d also need to tweak
the plot margins a bit, but it might make the dendrogram easier to read:

150 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

hc <- hclust(dist(scale(mtcars)))
dendro <- as.dendrogram(hc)
par(mar = c(3, 0.5, 0.5, 5))
plot(dendro, horiz = TRUE)

8 6 4 2 0

Hornet 4 Drive
Valiant
Merc 280
Merc 280C
Toyota Corona
Merc 240D
Merc 230
Porsche 914−2
Lotus Europa
Datsun 710
Volvo 142E
Honda Civic
Fiat X1−9
Fiat 128
Toyota Corolla
Chrysler Imperial
Cadillac Fleetwood
Lincoln Continental
Duster 360
Camaro Z28
Merc 450SLC
Merc 450SE
Merc 450SL
Hornet Sportabout
Pontiac Firebird
Dodge Challenger
AMC Javelin
Ferrari Dino
Mazda RX4
Mazda RX4 Wag
Ford Pantera L
Maserati Bora

Another clustering tool is “k-means clustering”. K-means clustering does re-
quire that we provide the number of clusters, and it is sensitive to the starting
location of the clusters (which can be user specified or automatic). This means
that K-means will not always return exactly the same clustering. Here we’ll
demonstrate using the iris data, which has floral dimensions for three species
of iris. We’ll specify three clusters to see how well we can separate the three
species.

data(iris)
kcl <- kmeans(iris[, -5], 3, nstart = 3)
table(kcl$cluster, iris$Species)

#

10.5. CLUSTERING 151

setosa versicolor virginica
1 0 2 36
2 50 0 0
3 0 48 14

Based on the table, it seems like “setosa” can be reliably separated but “versi-
color” and “virginica” are somewhat more difficult to separate, although even
“virginica” is identified 72% of the time. Let’s examine this data a bit more.
Since the data is rounded to the nearest 0.1 cm, we’ll add a bit of noise to the
data, using jitter()

plot(jitter(iris$Petal.Length), jitter(iris$Sepal.Width),
col = kcl$cluster, main = "K-means", xlab = "Petal length",
ylab = "Sepal width")

plot(jitter(iris$Petal.Length), jitter(iris$Sepal.Width),
col = iris$Species, main = "Species", xlab = "Petal length",
ylab = "Sepal width")

1 2 3 4 5 6 7

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

K−means

Petal length

S
ep

al
 w

id
th

1 2 3 4 5 6 7

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

Species

Petal length

S
ep

al
 w

id
th

Note that the colors in the above plots are essentially arbitrary. To better see
where the kmeans() result doesn’t match the original species, it is worth “zoom-
ing in” on the are where there is some confusion. Try running the above code
and adding “xlim=c(4,6),ylim=c(2.3,3.4)” to both plot() calls. It is also
worth repeating these plots without the use of jitter() to better appreciate
how it helps in this case.

152 CHAPTER 10. WORKING WITH MULTIPLE VARIABLES

For more useful descriptions of functions, see the CRAN Task View on multi-
variate analysis.

10.6 Exercises

1) The built in dataset iris has data on four floral measurements for three
different species of iris. Make a pairs plot of the data. What relationships
(correlations) look strongest?

2) The grouping evident with the Species variable in the last plot should
make you curious. Add the argument col=iris$Species to the last plot you
made. Does this change your conclusions about correlations between any of the
relationships? Can you make a lattice plot (xyplot()) showing Sepal.Length
as a function of Sepal.Width for the different species?

3) The built in data state.x77 (which can be loaded via data(state)) has data
for the 50 US states. Fit a principal components analysis to this data. What
proportion of variation is explained by the first three principal components?
What variable has the greatest (absolute value) loading value on each of the
first three principal components? (Note: the dataset state is a list of datasets
one of which is a matrix named state.x77)

4) The state.x77 can also be approached using hierarchical clustering. Create
a cluster dendrogram of the first 20 states (in alphabetical order, as presented
in the data) using hclust(). (Hint: given the length of the names, it might
be worth plotting the dendrogram horizontally). Do any clusters stand out as
surprising?

http://cran.r-project.org/web/views/Multivariate.html

Chapter 11

Linear Models I

Linear regression

11.1 Introduction

Regression is one of the most basic but fundamental statistical tools. We have
a response (“dependent”) variable - y that we want to model, or predict as a
function of the predictor (“independent”) variable - x. (y~x in R-speak).

We assume a linear model of the form y = B0 + B1 ∗ x + e where B0 is the
intercept, B1 is the slope, and e is the error. Mathematically we can estimate
B0 and B1 from the data. Statistical inference requires that we assume that:
the errors are independent & normal with mean 0 and var = s2.

Notice that we don’t have to assume that y or x are normally distributed, only
that the error (or residuals) are normally distributed 1.

11.2 Violation of Assumptions and Transforma-
tion of Data

We’ll begin with some data showing body and brain weights for 62 species
of mammals (if you haven’t installed MASS, do install.packages("MASS")).
We’ll load the data and fit a regression.

1In practice, regression and ANOVA methods are fairly robust to some degree of non-
normality in the residuals, but substantial non-random patterning in the residuals is cause for
concern as it indicates either need for transformation of the response or an inadequate model
(or both).

153

154 CHAPTER 11. LINEAR MODELS I

library(MASS)
data(mammals)
model1 <- lm(brain ~ body, data = mammals)
summary(model1)

#
Call:
lm(formula = brain ~ body, data = mammals)
#
Residuals:
Min 1Q Median 3Q Max
-810.07 -88.52 -79.64 -13.02 2050.33
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 91.00440 43.55258 2.09 0.0409 *
body 0.96650 0.04766 20.28 <2e-16 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 334.7 on 60 degrees of freedom
Multiple R-squared: 0.8727, Adjusted R-squared: 0.8705
F-statistic: 411.2 on 1 and 60 DF, p-value: < 2.2e-16

So far this looks pretty satisfactory - R2 is , and the p-value is vanishingly small
(< 2.2*10-16). But let’s have a look at the distribution of the residuals to see
if we’re violating any assumptions:

plot(model1)

11.2. VIOLATION OF ASSUMPTIONS AND TRANSFORMATION OF DATA155

0 2000 4000 6000

−
10

00
10

00

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
Asian elephant

Human

African elephant

−2 −1 0 1 2

−
6

0
4

8

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q
Asian elephant

African elephant

Human

0 2000 4000 6000

0.
0

1.
0

2.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
Asian elephantAfrican elephant

Human

0.0 0.2 0.4 0.6 0.8

−
5

0
5

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance

1

Residuals vs Leverage

African elephant

Asian elephant

Human

The diagnostic plots show some problems - the residuals don’t seem to be nor-
mally distributed (Normal Q-Q plot shows large departure from linear). This
suggests that transformation may be needed. Let’s look at the data, before and
after log transformation:

with(mammals, plot(body, brain))
with(mammals, plot(body, brain, log = "xy"))
with(mammals, plot(log10(body), log10(brain)))

0 2000 4000 6000

0
10

00
30

00
50

00

body

br
ai

n

1e−02 1e+00 1e+02 1e+04

1e
−

01
1e

+
01

1e
+

03

body

br
ai

n

−2 −1 0 1 2 3 4

−
1

0
1

2
3

log10(body)

lo
g1

0(
br

ai
n)

Here it is clear that this data may need log transformation (as is often the case
when the values occur over several orders of magnitude). The log/log plot of
body and brain mass shows a much stronger linear association. Let’s refit the
model.

156 CHAPTER 11. LINEAR MODELS I

model2 <- lm(log(brain) ~ log(body), data = mammals)
summary(model2)

#
Call:
lm(formula = log(brain) ~ log(body), data = mammals)
#
Residuals:
Min 1Q Median 3Q Max
-1.71550 -0.49228 -0.06162 0.43597 1.94829
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.13479 0.09604 22.23 <2e-16 ***
log(body) 0.75169 0.02846 26.41 <2e-16 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.6943 on 60 degrees of freedom
Multiple R-squared: 0.9208, Adjusted R-squared: 0.9195
F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16

We see a bump in the R2. The p-value isn’t appreciably improved (but it was
already very significant).

plot(model2)

11.2. VIOLATION OF ASSUMPTIONS AND TRANSFORMATION OF DATA157

−2 0 2 4 6 8

−
2

0
1

2

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
Human

Water opossum

Rhesus monkey

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s

Normal Q−Q
Human

Water opossum

Rhesus monkey

−2 0 2 4 6 8

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
HumanWater opossumRhesus monkey

0.00 0.04 0.08

−
3

−
1

1
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Cook's distance 0.5

0.5

Residuals vs Leverage
Human

Musk shrew

Water opossum

This is much more satisfactory - the residuals are much nearer normal distri-
bution than in the raw data. We can confirm this by inspecting the residuals.
From the summary we can see that log(brain) is predicted to be near 2.13 +
0.752 * log(body), so each unit increase in log(body) yields an increase of
0.752 in log(brain).

op <- par(mfrow = c(1, 2), mar = c(4, 3, 2, 1))
plot(density(model1$resid), main = "model1")
plot(density(model2$resid), main = "model2")

158 CHAPTER 11. LINEAR MODELS I

−500 1000

0.
00

0
0.

00
4

0.
00

8

model1

N = 62 Bandwidth = 22.21

D
en

si
ty

−2 0 1 2

0.
0

0.
2

0.
4

0.
6

model2

N = 62 Bandwidth = 0.2715
D

en
si

ty

par(op)

Note that we must refit the model to check this - the residuals from the log
transformed model are not the same as the log of the residuals! They can’t be -
the residuals are centered about zero (or should be), so there are many negative
values, an the log of a negative number can’t be computed.

Notice that lm() creates an “lm object” from which we can extract things, such
as residuals. Try coef(model1) and summary(model2)$coeff.

Another example of violation of assumptions. This is weight and age (in months)
data for 5337 children <12 years old.

Weights <- read.csv("../Data/WeightData.csv", comm = "#",
stringsAsFactors = TRUE)

hist(Weights$age, main = "")
plot(weight ~ age, data = Weights)

11.2. VIOLATION OF ASSUMPTIONS AND TRANSFORMATION OF DATA159

Weights$age

F
re

qu
en

cy

0 50 100 150

0
20

40
60

80

0 40 80 120

50
10

0
15

0
age

w
ei

gh
t

We can see that there appears to be increasing variation in weight as children
age. This is pretty much what we’d expect - there is more space for variation (in
absolute terms) in the weight of 12 year-olds than in 12 week-olds. However this
suggests that for a valid regression model transformation of the weight might
be needed.

op <- par(mfrow = c(1, 2), mar = c(2, 3, 1.5, 0.5))
plot(log(weight) ~ age, data = Weights)
abline(v = 7, lty = 2)
plot(log(weight) ~ age, data = subset(Weights, age > 7))

0 40 80 120

2.
0

3.
0

4.
0

5.
0

age

lo
g(

w
ei

gh
t)

20 60 100 140

3.
0

4.
0

5.
0

age

lo
g(

w
ei

gh
t)

The variation appears more consistent in the first plot, apart from some reduced
variation in weights (and a steeper slope) at the very low end of the age range
(<7 months, indicated by the dashed line). In the second plot we’ve excluded
this data. Let’s fit a regression to both raw and transformed data and look at
the residuals.

160 CHAPTER 11. LINEAR MODELS I

m1 <- lm(weight ~ age, data = Weights)
m2 <- lm(log(weight) ~ age, data = subset(Weights, age > 7))

You can use plot(m1) to look at the diagnostic plots. Let’s compare the distri-
bution of the residuals, though here we’ll only look at the first two plots from
each model.

op <- par(mfrow = c(2, 2), mar = c(2, 3, 1.5, 0.5))
plot(m1$fitted.values, m1$resid)
plot(density(m1$resid))
plot(m2$fitted.values, m2$resid)
plot(density(m2$resid))

20 40 60 80 100

−
40

20
80

m1$fitted.values

m
1$

re
si

d

−60 −20 20 60

0.
00

0.
03

0.
06

density.default(x = m1$resid)

N = 300 Bandwidth = 2.006

D
en

si
ty

3.5 4.0 4.5

−
0.

8
0.

0
0.

6

m2$fitted.values

m
2$

re
si

d

−1.0 −0.5 0.0 0.5

0.
0

1.
0

density.default(x = m2$resid)

N = 250 Bandwidth = 0.05813

D
en

si
ty

par(op)

Both of the plots of residuals vs fitted values and the kernel density estimates
of the residuals show that the transformed data (with the <7 month subjects
excluded) more nearly meets the regression assumptions, though there is still
a bit of change in variation, they are certainly sufficiently close to normal and
constant to meet regression assumptions.

11.3. HYPOTHESIS TESTING 161

11.3 Hypothesis Testing

IN our analysis of the ’beans” data, there was a strong correlation between
Shoot and Root biomass 2, and it seems to apply to both the High P and Low
P plants.

beans <- read.csv("../Data/BeansData.csv", comm = "#",
stringsAsFactors = TRUE)↪→

plot(RtDM ~ ShtDM, data = beans, col = as.factor(P.lev))

0.5 1.0 1.5 2.0 2.5

0.
6

1.
0

1.
4

1.
8

ShtDM

R
tD

M

Let’s have a look at the regression fit to this data. Note that a factor (like
P.lev) can be used directly to color points. They are colored with the colors
from the color palette that correspond to the factor levels (see palette() to
view or change the default color palette).

m1 <- lm(RtDM ~ ShtDM, data = beans)
summary(m1)

#
Call:
lm(formula = RtDM ~ ShtDM, data = beans)
#
Residuals:
Min 1Q Median 3Q Max

2This data shows strong “root:shoot allometry” - the slope of log(Root)~log(Shoot) is
constant across treatments, indicating that while a treatment might reduce overall size, it
doesn’t alter the fundamental growth pattern. See work by Karl Niklas and others on this
topic.

162 CHAPTER 11. LINEAR MODELS I

-0.15540 -0.06922 -0.01391 0.06373 0.22922
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20659 0.04892 4.223 0.00035 ***
ShtDM 0.56075 0.03771 14.872 5.84e-13 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.1007 on 22 degrees of freedom
Multiple R-squared: 0.9095, Adjusted R-squared: 0.9054
F-statistic: 221.2 on 1 and 22 DF, p-value: 5.838e-13

plot(m1$resid ~ m1$fitted.values)

0.6 0.8 1.0 1.2 1.4 1.6 1.8

−
0.

1
0.

0
0.

1
0.

2

m1$fitted.values

m
1$

re
si

d

The residuals don’t show any particular pattern, and they are approximately
normal (see plot(density(m1$resid))). The summary shows an inter-
cept of signif(summary(m1)$coef[1,1],3) and slope (the ShtDM term) of
signif(summary(m1)$coef[2,1],3). Standard errors are given for each
parameter, as well as a t-value and a p-value (columns 3 and 4).

The t-value and p-values given by summary(m1)3 are for the null hypothesis
that B0 (or B1) is equal to 0. In this case the p-values are both very small,
indicating a high degree of certainty that both parameters are different from 0
(note that this is a 2-sided test).

In some cases, we want to know more. For example, we might have the hypoth-
esis that the slope of the root:shoot relationship should be 1. We can test this

3This applies to the t- and p-values shown in the summary for any lm object.

11.3. HYPOTHESIS TESTING 163

by calculating the t-value and p-value for this test. Recall that t is calculated as
the difference between the observed and hypothesized values scaled by (divided
by) the standard error.

B1 <- summary(m1)$coeff[2, 1:2]
t <- (B1[1] - 1)/B1[2]
t

Estimate
-11.64947

For convenience we’ve stored the estimate and SE for B1 (slope) as B1 - we could
just as well have used t=(summary(m1)$coeff[2,1]-1)/summary(m1)$coeff[2,2].
The t value is very large and negative (we can read this value as “B1 is 11.65
standard errors smaller than the hypothesized value”), so the slope estimate is
smaller than the hypothesized value. If we want to get a p-value for this, we
use the function pt(), which give probabilities for the t distribution.

pt(t, df = 22, lower.tail = TRUE)

Estimate
3.505015e-11

You can see we specify 22 degrees of freedom - this is the same as error degrees
of freedom shown in summary(m1). We specified lower.tail=TRUE because we
have a large negative value of t and we want to know how likely a lower (more
negative) value would be - in this case it is pretty unlikely! Since our hypothesis
is a 2-sided hypothesis, we’ll need to multiply the p-value by 2.

We can use the same approach to test hypothesized values of B0 - but be sure to
use the SE for B0, since the estimates of SE are specific to the parameter. Note:
Here is one way to check your work on a test like this: Calculate a new y-value
that incorporates the hypothesis. For example - here our hypothesis is B1=1,
mathematically 1 * beans$ShtDM. So if we subtract that from the root biomass,
what we have left is the difference between our hypothesized slope and the ob-
served slope. In this case we calculate it as RtDM-1*ShtDM. If the hypothesis was
correct then the slope of a regression of this new value on the predictor would
be zero. Have a look at summary(lm(RtDM-1*ShtDM~ShtDM,data=beans)) - the
slope will be quite negative, showing that our hypothesis is not true, and the
p-value very low. Note though that this p-value is 2-sided, and in fact is twice
the p-value we calculated above.

R actually has a built-in function to do such tests - offset() can be used to
specify offsets within the formula in a call to lm().

164 CHAPTER 11. LINEAR MODELS I

summary(lm(RtDM ~ ShtDM + offset(1 * ShtDM), data = beans))

#
Call:
lm(formula = RtDM ~ ShtDM + offset(1 * ShtDM), data = beans)
#
Residuals:
Min 1Q Median 3Q Max
-0.15540 -0.06922 -0.01391 0.06373 0.22922
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20659 0.04892 4.223 0.00035 ***
ShtDM -0.43925 0.03771 -11.649 7.01e-11 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.1007 on 22 degrees of freedom
Multiple R-squared: 0.9095, Adjusted R-squared: 0.9054
F-statistic: 221.2 on 1 and 22 DF, p-value: 5.838e-13

The syntax is a bit odd, since we have both ShtDM and 1*ShtDM in our model,
but this is how we specify a fixed hypothetical value.

It is useful to know that the line plotting function abline() can take an lm
object as an argument (The argument lty specifies line type - 2 is a dotted
line).

plot(RtDM ~ ShtDM, data = beans)
abline(m1, lty = 2)

11.4. PREDICTIONS AND CONFIDENCE INTERVALS FROM REGRESSION MODELS165

0.5 1.0 1.5 2.0 2.5

0.
6

1.
0

1.
4

1.
8

ShtDM

R
tD

M

11.4 Predictions and Confidence Intervals from
Regression Models

In some cases we want to use a regression model to predict values we haven’t
(or can’t) measure, or we would like to know how confident we are about a
regression line. The function predict() can make predictions from lm objects.

new.vals <- c(2, 2.1, 2.2, 3.5)
preds = predict(m1, newdata = data.frame(ShtDM = new.vals))
points(new.vals, preds, col = "red", pch = 24)

0.5 1.5 2.5 3.5

0.
5

1.
0

1.
5

2.
0

ShtDM

R
tD

M

166 CHAPTER 11. LINEAR MODELS I

A key detail to notice: predict() requires the newdata as a data frame - this is
to allow prediction from more complex models 4. The predicted values should
(and do) fall right on the line. Also notice that the final value for which we
wanted a prediction is well beyond the range of the data. This is not wise, and
such predictions should not be trusted (but R will not warn you - always engage
the brain when analyzing!).

We can think about two types of “confidence intervals” for regressions. The
first can be thought of as describing the certainty about the location of the
regression line (the average location of y given x). R can calculate this with the
predict() function if we ask for the “confidence” interval.

ci <- predict(m1, data.frame(ShtDM = sort(beans$ShtDM)), level =
0.95,↪→

interval = "confidence")
head(ci)

fit lwr upr
1 0.4942547 0.4270534 0.5614560
2 0.5432641 0.4811956 0.6053326
3 0.5919371 0.5346135 0.6492607
4 0.6169465 0.5618943 0.6719988
5 0.6434139 0.5906208 0.6962070
6 0.6530588 0.6010482 0.7050694

Notice there are three values - the “fitted” value, and the lower and upper CI.
Also notice that we can specify a confidence level, and that we used our predictor
variable (beans$ShtDM) as the new data, but we used sort() on it - this is to
aid in plotting the interval.

We can plot this interval on our scatterplot using the function lines(). Since
we’ve sorted the data in ci (y-axis), we need to sort the x-axis values also.
(Note: sort() also removes any NA values.)

plot(RtDM ~ ShtDM, data = beans)
abline(m1, lty = 1)
lines(sort(beans$ShtDM), ci[, 2], col = "red")
lines(sort(beans$ShtDM), ci[, 3], col = "red")

4More precisely, the newdata= argument for predict() needs to be a data.frame with the
same variable names as the predictors in the model for which predictions are being made.

11.4. PREDICTIONS AND CONFIDENCE INTERVALS FROM REGRESSION MODELS167

0.5 1.0 1.5 2.0 2.5

0.
6

1.
0

1.
4

1.
8

ShtDM

R
tD

M

It shouldn’t surprise us that the confidence interval here is quite narrow - the
p-values for B0 and B1 are very small. Notice that a fair number of the data
points are outside the bands. This is because this “confidence interval” applies
to the regression line as a whole. If we want to predict individual values, the
uncertainty is a bit greater - this is called a “prediction interval”.

lines(sort(beans$ShtDM), ci[, 2], col = "red")
lines(sort(beans$ShtDM), ci[, 3], col = "red")
pri <- predict(m1, data.frame(ShtDM = sort(beans$ShtDM)),

level = 0.95, interval = "prediction")
lines(sort(beans$ShtDM), pri[, 2], lty = 2)
lines(sort(beans$ShtDM), pri[, 3], lty = 2)

0.5 1.0 1.5 2.0 2.5

0.
6

1.
0

1.
4

1.
8

ShtDM

R
tD

M

When we plot this notice that ~95% of our data points are within this interval

168 CHAPTER 11. LINEAR MODELS I

- this is consistent with the meaning of this interval.

11.5 Exercises

1) For the beans data test how effective root biomass (RtDM) is as a predictor
of root length (rt.len).

2) For the beans data, test the hypothesis that the slope of the relationship of
root biomass ~ shoot biomass (B1) is 0.5.

3) We worked with the dataset mammals earlier in this chapter, and concluded
that it needed to be log-transformed to meet regression assumptions. Use
predict() to calculate the confidence interval and regression line for this regres-
sion and graph it on both the log/log plot and on the un-transformed data (this
will require that you back-transform the coordinates for the line and confidence
intervals).

Chapter 12

Linear Models II

ANOVA

12.1 I. Introduction

It is often the case that we have one or more factors that we’d like to use
to model some response. This is where we turn to Analysis of Variance, or
ANOVA. Remember that, despite the fancy name, one-way ANOVA is basically
just another form of regression - the continuous predictor variable is replaced
by a factor. Since this is the case, it should not be surprising that the function
lm() can be used for this type of analysis also.

12.2 One-way ANOVA

To explore this type of model we’ll load some data on how the type of wool and
the loom tension affects the number of breaks in wool yarn being woven.

data(warpbreaks)
boxplot(breaks ~ wool, data = warpbreaks)
boxplot(breaks ~ tension, data = warpbreaks)

169

170 CHAPTER 12. LINEAR MODELS II

A B

10
20

30
40

50
60

70

wool

br
ea

ks

L M H

10
20

30
40

50
60

70

tension
br

ea
ks

Do the two types of wool have differing average numbers of breaks? The boxplot
does not suggest much difference. One way to check would be to use a two-
sample t-test.

t.test(breaks ~ wool, data = warpbreaks)

#
Welch Two Sample t-test
#
data: breaks by wool
t = 1.6335, df = 42.006, p-value = 0.1098
alternative hypothesis: true difference in means between group A and group B is not equal to 0
95 percent confidence interval:
-1.360096 12.915652
sample estimates:
mean in group A mean in group B
31.03704 25.25926

Of course, as we saw in Lesson 3, if we have more than two groups, we need
something different.

oneway.test(breaks ~ tension, data = warpbreaks)

#
One-way analysis of means (not assuming equal
variances)
#

12.2. ONE-WAY ANOVA 171

data: breaks and tension
F = 5.8018, num df = 2.00, denom df = 32.32,
p-value = 0.007032

This strongly suggests that tension affects breaks. We can also use lm() to
fit a linear model.

summary(lm(breaks ~ tension, data = warpbreaks))

#
Call:
lm(formula = breaks ~ tension, data = warpbreaks)
#
Residuals:
Min 1Q Median 3Q Max
-22.389 -8.139 -2.667 6.333 33.611
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.39 2.80 12.995 < 2e-16 ***
tensionM -10.00 3.96 -2.525 0.014717 *
tensionH -14.72 3.96 -3.718 0.000501 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 11.88 on 51 degrees of freedom
Multiple R-squared: 0.2203, Adjusted R-squared: 0.1898
F-statistic: 7.206 on 2 and 51 DF, p-value: 0.001753

The coefficients shown in the output from summary begin with the “Inter-
cept”. This is the mean for the first level of the factor variable 1 - in this
case tension="L". The coefficient given for the next level is for the difference
between the second and the first level, and that for the third is for the difference
between first and third.

We can use the function anova() on an lm object to see an analysis of variance
table for the model.

1By default factor levels are assigned by alpha-numeric order, so the default order for levels
“H”, “M”, and “L” would be “H=1; L=2, M=3”. This doesn’t make sense in this case (though
it wouldn’t change the estimates of group means or differences between them). We saw how
to fix this in Chapter 2.5.

172 CHAPTER 12. LINEAR MODELS II

anova(lm(breaks ~ tension, data = warpbreaks))

Analysis of Variance Table
#
Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)
tension 2 2034.3 1017.13 7.2061 0.001753 **
Residuals 51 7198.6 141.15

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

This shows very strong support (p=0.0018) for a significant effect of tension on
breaks. Note that summary(aov(breaks~tension,data=warpbreaks))2 will
give the same result with slightly different format.

If we want to test all the differences between groups, we can use TukeyHSD()
to do so - but we must use it on an an object created by aov(), it won’t work
with an lm() object.

TukeyHSD(aov(breaks ~ tension, data = warpbreaks))

Tukey multiple comparisons of means
95% family-wise confidence level
#
Fit: aov(formula = breaks ~ tension, data = warpbreaks)
#
$tension
diff lwr upr p adj
M-L -10.000000 -19.55982 -0.4401756 0.0384598
H-L -14.722222 -24.28205 -5.1623978 0.0014315
H-M -4.722222 -14.28205 4.8376022 0.4630831

This lists all the pairwise differences between groups showing the estimated dif-
ference between groups, the lower and upper confidence limits for the difference,
and the p-value for the difference - a significant p-value means the difference
is real. We can see that both H and M are different from L, but not from each
other.

Of course, just as in regression it is good practice to check our diagnostic plots
for violations of assumptions.

2The syntax is potentially confusing – unfortunately anova(lm(y~x, data=df)),
summary(lm(y~x, data=df)), and aov(y~x,data=df) are so confusingly similar.

12.3. FOR VIOLATIONS OF ASSUMPTIONS. 173

plot(lm(breaks ~ tension, data = warpbreaks))

25 30 35

−
20

10
40

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
59

29

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
59

29

25 30 35

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
59

29

−
2

0
2

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

L M H
tension :

Constant Leverage:
 Residuals vs Factor Levels

59

29

There is evidence of modest difference in variance between groups (though not
enough to cause concern), and the normal QQ plot shows that the residuals are
near enough to normal.

12.3 For violations of assumptions.

For a one-way ANOVA (i.e. a single factor) where assumptions are violated,
we do have a few options. The function oneway.test() we used above does
not assume equal variance, so it can be used with unequal variance. If the
residuals are strongly non-normal, the Kruskal-Wallace test is a non-parametric
alternative.

kruskal.test(breaks ~ wool, data = warpbreaks)

#
Kruskal-Wallis rank sum test
#
data: breaks by wool
Kruskal-Wallis chi-squared = 1.3261, df = 1,
p-value = 0.2495

174 CHAPTER 12. LINEAR MODELS II

Another option is transformation of the data. However (as we’ll see) a common
cause of violation of regression assumptions is that there are sources of variation
not included in the model. One of the brilliant features of the linear model is
that it can accommodate multiple predictors, and the inclusion of the right
predictors sometimes allows the regression assumptions to be met 3.

12.4 Multi-Way ANOVA - Understanding
summary(lm())

Particularly in designed experiments we often do have more than one factor
that we need to include in our model. For example in the warpbreaks data
we looked at both tension and wool separately, but we might need to combine
them to understand what is going on. The formula interface lets us tell R how
to use multiple predictors.

R formula Y as a function of:
Y ~ X1 X1
Y ~ X1 + X2 X1 and X2
Y ~ X1 * X2 X1 and X2 and the X1xX2 interaction
Y ~ X1 + X2 + X1:X2 Same as above, but the interaction is

explicit
(Y ~ (X1 + X2 +X3)ˆ2) X1, X2, and X3, with only 2-way

interactions
Y ~ X1 +I(X1ˆ2) X1 and X1 squared (use I()for a

literal power)
Y ~ X1|X2 X1 for each level of X2

summary(lm(breaks ~ wool + tension, data = warpbreaks))

#
Call:
lm(formula = breaks ~ wool + tension, data = warpbreaks)
#
Residuals:
Min 1Q Median 3Q Max
-19.500 -8.083 -2.139 6.472 30.722
#
Coefficients:

3Of course, this assumes that you knew or guessed what the “right” predictors might be
and measured them.

12.4. MULTI-WAY ANOVA - UNDERSTANDING SUMMARY(LM()) 175

Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.278 3.162 12.423 < 2e-16 ***
woolB -5.778 3.162 -1.827 0.073614 .
tensionM -10.000 3.872 -2.582 0.012787 *
tensionH -14.722 3.872 -3.802 0.000391 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 11.62 on 50 degrees of freedom
Multiple R-squared: 0.2691, Adjusted R-squared: 0.2253
F-statistic: 6.138 on 3 and 50 DF, p-value: 0.00123

The model coefficients here are understood nearly as before - the intercept now
is the first level of each factor (e.g. wool=A & tension=L). The woolB estimate
is the difference between wool=A and wool=B. Because we have not included the
wool x tension interaction here, we assume that the influence of wool is the
same for all levels of tension. As before we can use anova() to see an ANOVA
table showing the estimate of the effect for each factor, and TukeyHSD() on an
aov() fit to test group-wise differences.

anova(lm(breaks ~ wool + tension, data = warpbreaks))

Analysis of Variance Table
#
Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)
wool 1 450.7 450.67 3.3393 0.073614 .
tension 2 2034.3 1017.13 7.5367 0.001378 **
Residuals 50 6747.9 134.96

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

TukeyHSD(aov(breaks ~ wool + tension, data = warpbreaks))

Tukey multiple comparisons of means
95% family-wise confidence level
#
Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks)
#
$wool
diff lwr upr p adj
B-A -5.777778 -12.12841 0.5728505 0.0736137

176 CHAPTER 12. LINEAR MODELS II

#
$tension
diff lwr upr p adj
M-L -10.000000 -19.35342 -0.6465793 0.0336262
H-L -14.722222 -24.07564 -5.3688015 0.0011218
H-M -4.722222 -14.07564 4.6311985 0.4474210

Notice that the p-value for the ANOVA and the Tukey comparisons are the
same for the factor wool but not for tension - that is because there are only
two levels of wool but 3 levels of tension.
With more than one factor we also need to think about interactions between
them, and what they mean. I this case we can understand the interaction as
asking:
Does changing the tension have the same effect on breaks for both wool A and
wool B?

summary(lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks))↪→

#
Call:
lm(formula = breaks ~ wool + tension + wool:tension, data = warpbreaks)
#
Residuals:
Min 1Q Median 3Q Max
-19.5556 -6.8889 -0.6667 7.1944 25.4444
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.556 3.647 12.218 2.43e-16 ***
woolB -16.333 5.157 -3.167 0.002677 **
tensionM -20.556 5.157 -3.986 0.000228 ***
tensionH -20.000 5.157 -3.878 0.000320 ***
woolB:tensionM 21.111 7.294 2.895 0.005698 **
woolB:tensionH 10.556 7.294 1.447 0.154327

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 10.94 on 48 degrees of freedom
Multiple R-squared: 0.3778, Adjusted R-squared: 0.3129
F-statistic: 5.828 on 5 and 48 DF, p-value: 0.0002772

The output of summary() is similar to the above. The woolB estimate now
is only for tension=L, since the last two estimates show the effect of wool on

12.5. MULTI-WAY ANOVA - CALCULATING GROUP MEANS 177

breaks for the other tensions. Since this estimate is negative for tension=L
and positive for the higher levels of tension this is likely to be a significant
difference.

12.5 Multi-Way ANOVA - Calculating group
means

If we wanted to calculate the means for each for the groups we could do so by
adding coefficients together - for example the estimate for wool=B; tension=H
would be

Intercept (wool=A;tension=L)+woolB+tensionH+woolB:tensionH

It is not too complicated to calculate this from the coefficients.

m1 <- lm(breaks ~ wool * tension, data = warpbreaks)
sum(summary(m1)$coeff[c(1, 2, 4, 6), 1])

[1] 18.77778

But it would be tedious (and error-prone) to do this for all factor levels. For-
tunately we don’t need to - we can use the function predict() to do it for us.
We just need to give it all the possible factor levels as "newdata". We can use
the function unique() to give us the unique combinations of factor levels:

unique(warpbreaks[, 2:3])

We can then use these as the "newdata" argument to predict() to get our
predicted values. First we’ll create the lm object, and then we’ll create an
object for this "newdata", and then we’ll calculate the predicted values.

m1 <- lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks)↪→

m1.pv = unique(warpbreaks[, 2:3])
m1.pv$predicted = predict(m1, newdata = unique(warpbreaks[,

2:3]))
m1.pv

In some cases 4 we could also get these means is by using tapply() to apply
the function mean().

4Using tapply() in this way will only produce the same values as predict() for a saturated
model, i.e. one that contains all factors and interactions! Also note that if there were any
NA values in the data they would propagate as we haven’t added na.rm=TRUE.

178 CHAPTER 12. LINEAR MODELS II

tapply(m1$fitted, list(warpbreaks$wool, warpbreaks$tension),
mean)

L M H
A 44.55556 24.00000 24.55556
B 28.22222 28.77778 18.77778

12.6 Multi-Way ANOVA - Getting a handle on
interactions

It can be hard (or nearly impossible) to understand what an interaction really
means. In this example it means that the effect of changing tension of rate of
breakage differs for the two types of wool.

anova(lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks))↪→

Analysis of Variance Table
#
Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)
wool 1 450.7 450.67 3.7653 0.0582130 .
tension 2 2034.3 1017.13 8.4980 0.0006926 ***
wool:tension 2 1002.8 501.39 4.1891 0.0210442 *
Residuals 48 5745.1 119.69

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice that here adding the interaction moved the effect of wool from p=0.074
to p=0.058. The interaction was strong enough that ignoring it increased the
size of the residuals, and so reduced the magnitude of the F value.

Often it is helpful to visualize interactions to better understand them, and the
function interaction.plot() gives us a quick way to do this.

with(warpbreaks, interaction.plot(x.factor = tension, wool,
response = breaks))

12.6. MULTI-WAY ANOVA - GETTING A HANDLE ON INTERACTIONS179

20
25

30
35

40
45

tension

m
ea

n
of

 b
re

ak
s

L M H

 wool

A
B

The syntax here is a bit different: the first and third arguments are the x and y
axes, and the second is the grouping factor (trace.factor). This clearly and
quickly shows us that the biggest difference between wools is at low tension.5

plot(lm(breaks ~ tension * wool, data = warpbreaks))

20 25 30 35 40 45

−
20

0
20

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
59

4

−2 −1 0 1 2

−
2

0
2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q
59

4

20 25 30 35 40 45

0.
0

1.
0

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location
594

−
2

0
2

Factor Level Combinations

S
ta

nd
ar

di
ze

d
re

si
du

al
s

L M H
tension :

Constant Leverage:
 Residuals vs Factor Levels

59

4

5A more complete interpretation is that increasing tension reduces the number of breaks,
but this occurs at a lower tension for wool A than it does for wool B.

180 CHAPTER 12. LINEAR MODELS II

A check the diagnostic plots shows minimal evidence of unequal variance (“het-
eroscedasticity”) or departure from normal distribution. As hinted above note
how improving the model by accounting for more sources of variation (adding
the second factor and the interaction) improved the agreement with regression
assumptions.

12.7 Multi-Way ANOVA - Tukey HSD and
family-wise error

When we introduce an interaction we now have many more groups. In this
example we have 6 groups (2 wools * 3 tensions). This gives many more pairwise
comparisons.

TukeyHSD(aov(breaks ~ wool + tension + wool:tension, data =
warpbreaks))↪→

Tukey multiple comparisons of means
95% family-wise confidence level
#
Fit: aov(formula = breaks ~ wool + tension + wool:tension, data = warpbreaks)
#
$wool
diff lwr upr p adj
B-A -5.777778 -11.76458 0.2090243 0.058213
#
$tension
diff lwr upr p adj
M-L -10.000000 -18.81965 -1.180353 0.0228554
H-L -14.722222 -23.54187 -5.902575 0.0005595
H-M -4.722222 -13.54187 4.097425 0.4049442
#
$`wool:tension`
diff lwr upr p adj
B:L-A:L -16.3333333 -31.63966 -1.027012 0.0302143
A:M-A:L -20.5555556 -35.86188 -5.249234 0.0029580
B:M-A:L -15.7777778 -31.08410 -0.471456 0.0398172
A:H-A:L -20.0000000 -35.30632 -4.693678 0.0040955
B:H-A:L -25.7777778 -41.08410 -10.471456 0.0001136
A:M-B:L -4.2222222 -19.52854 11.084100 0.9626541
B:M-B:L 0.5555556 -14.75077 15.861877 0.9999978
A:H-B:L -3.6666667 -18.97299 11.639655 0.9797123
B:H-B:L -9.4444444 -24.75077 5.861877 0.4560950
B:M-A:M 4.7777778 -10.52854 20.084100 0.9377205

12.8. HSD.TEST - A USEFUL TOOL FOR ANOVA 181

A:H-A:M 0.5555556 -14.75077 15.861877 0.9999978
B:H-A:M -5.2222222 -20.52854 10.084100 0.9114780
A:H-B:M -4.2222222 -19.52854 11.084100 0.9626541
B:H-B:M -10.0000000 -25.30632 5.306322 0.3918767
B:H-A:H -5.7777778 -21.08410 9.528544 0.8705572

Tukey’s HSD shows us all 15 pairwise differences between the 6 combinations
of wool and tension. This a situation where Fishers LSD does not perform
well. The probability of detecting at least one difference where none exist is
(1 − (1 − α)n), with α = 0.05 and n=15 this is 0.537. This shows why Tukey’s
multiple comparisons is important – this “family-wise” error rate can get quite
high quickly.

Sorting out which groups really differ is not always simple, though in this case
we can rather quickly see that the other five groups differ from woolA:tensionL,
but those 5 groups don’t differ from each other.

12.8 HSD.test - a useful tool for ANOVA

The package agricolae has some nice tools to make multiple comparisons a bit
easier. Install the package to follow along.

library(agricolae)
data(sweetpotato)

Now we can fit a model to the data and make comparisons.

model <- aov(yield ~ virus, data = sweetpotato)
out <- HSD.test(model, "virus", group = TRUE)
out$means
out$groups

HSD.test() has nicely calculated the mean and standard deviations for each
group and a description of how the means are grouped, with the groups denoted
by letter such that groups that share a letter aren’t different. In this case oo
differs from cc and fc, and fc differs from oo and ff.

A convenience function is provided which we can use to make a barplot of such
an analysis, and all the arguments to barplot() can be used to modify this
plot.

182 CHAPTER 12. LINEAR MODELS II

bar.group(out$groups, ylim = c(0, 45), density = 4, border =
"blue")↪→

bar.group(out$groups, ylim = c(0, 45), col = c("grey30",
"grey70"),↪→

names.arg = c("Vir.1", "Vir.2", "Vir.3", "Vir.4"), ylab =
"some units")↪→

oo ff cc fc

0
10

20
30

40 a ab

bc

c

Vir.1 Vir.2 Vir.3 Vir.4

so
m

e
un

its

0
10

20
30

40 a ab

bc

c

Here we demonstrate again on the warpbreaks data:

model2 <- (lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks))↪→

HSD.test(model2, trt = "tension", group = TRUE, main = "Wool x
Tension")$groups↪→

Note that while the HSD.test() function does not work for interactions, we can
create an interaction variable using intearction() and then use HSD.test().

txw <- with(warpbreaks, interaction(wool, tension))
model3 <- aov(breaks ~ txw, data = warpbreaks)
library(agricolae)
HSD.test(model3, "txw", group = TRUE)$groups

Note that this output is much more compact than the output from
TukeyHSD(aov(breaks~wool:tension,data=warpbreaks)) shown earlier,
but the conclusion is identical. The compactness does come at a cost of the
exact p-values not being shown.

12.9 Exercises

1) For the beans data we used in Chapter 11 model shoot biomass as a function
of phosphorus (phos). Make sure phos is coded as a factor. Check the coefficient

12.9. EXERCISES 183

estimates summary(lm(...)) - what do they suggest?

2) Use Tukey to compare the different levels of phos for the model in Problem
1. How does this confirm your answer to #1? Is the responsed similar for Root
biomass? Does this same general pattern hold?

3) I kept track of my electric bill every month for over 7 years. The data set
(“electric bill.txt”) is located in the “Data” directory in essential R, and includes
variable for month, year, the amount of electricity used in kilowatt hours (kwh),
the number of days in the billing cycle (days), and the average temperature
during the billing cycle (avgT). There are also variables that describe whether
the bill was based on an estimated reading or actual reading (est, with levels
e and a for estimated or actual), cost (in dollars), and energy use per day
(kWhd.1).

Fit a model of kwhd.1 as a function of avgT. What is the R2? Test the hy-
pothesis that the slope is -0.25 kwh per day per degree F increase in average
monthly temperature. What is the p-value for this test?

4) My old house did not have AC, but we ran several fans in the summer, and
the refrigerator and freezer certainly worked harder during the warmer months,
so there could be a minimum in energy use at moderate temperatures. Include
a quadratic (squared) term for average temperature. How does this change the
R2 value of the model? What is the p-value for the quadratic term? Do the
residuals suggest that one model should be favored?

EXTRA) Graph both the linear model (a line) and the quadratic model (a
curve) over the data. Hint you can use predict() and lines() like we used
for confidence intervals to add a non-linear regression line, or use the function
curve() to add curves to plots.

184 CHAPTER 12. LINEAR MODELS II

Chapter 13

Linear Models III

More Linear Models

13.1 Introduction

In the last chapter we looked at extending linear regression to prediction from
one or more categorical variables (factors). Here we’ll explore a few more ex-
tensions of the linear model. First we’ll look at using multiple continuous pre-
dictors. We’ll also see how we can mix continuous and categorical predictors
(often known as ANCOVA - Analysis of Co-variance). We’ll also briefly consider
how we can make specified comparisons between groups, and look at some more
complex experimental designs.

A word about model selection – whenever we make statistical models we make
decisions about what to include and what not to include. Essential R is focused
on the mechanics of using R, and does not treat the issue of model selection,
beyond noting that looking at whether regression assumptions are met is an
important part of model selection. There are many different tools for testing
different combinations of variables in models (forward selection, reverse selec-
tion,. . .), and there are (sometimes very strong) critiques of all these methods.
The most defensible practice is to build a model based on hypothesis.

13.2 Multiple Regression

In some situations there is more than one predictor variable that needs to be
included in our model. Here we’ll use the “stackloss” data to demonstrate some

185

186 CHAPTER 13. LINEAR MODELS III

simple multiple regressions1. This data concerns the oxidation of ammonia to
nitric acid based on three variables: Air flow, Water temperature, and Acid
Concentration. Let’s begin by looking at all the variables individually.

data(stackloss)
summary(lm(stack.loss ~ Air.Flow, data = stackloss))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -44.132025 6.10585762 -7.227818 7.314184e-07
Air.Flow 1.020309 0.09995287 10.207905 3.774296e-09

summary(lm(stack.loss ~ Water.Temp, data = stackloss))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -41.910867 7.6056213 -5.510512 2.575258e-05
Water.Temp 2.817445 0.3567438 7.897672 2.028017e-07

summary(lm(stack.loss ~ Acid.Conc., data = stackloss))$coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) -47.9631841 34.5043888 -1.390060 0.1805827
Acid.Conc. 0.7589552 0.3991529 1.901415 0.0725230

There is some relationship with all three variables, though the p-value for
Acid.Conc. is not quite low enough to be considered significant. With multi-
ple regression we can combine multiple predictors, using the formula interface
introduced in Chapter 12.
So we can use stack.loss~Air.Flow + Water.Temp to combine the two.

summary(lm(stack.loss ~ Air.Flow + Water.Temp, data =
stackloss))$coef↪→

Estimate Std. Error t value
(Intercept) -50.3588401 5.1383281 -9.800628
Air.Flow 0.6711544 0.1266910 5.297568
Water.Temp 1.2953514 0.3674854 3.524905
Pr(>|t|)
(Intercept) 1.216471e-08
Air.Flow 4.897970e-05
Water.Temp 2.419146e-03

1For a slightly longer introduction to multiple regression, see Section 14 in “SimpleR” by
John Verzani. For a longer, more in-depth introduction see Chapter 11 in “Statistics: An
Introduction using R” by Michael Crawley.

13.2. MULTIPLE REGRESSION 187

Note that we’ve displayed only the coefficients here (summary(...)$coef) for
brevity. We can see that both variables have a highly significant effect on the
response. We haven’t yet tested to see if they interact.

summary(lm(stack.loss ~ Air.Flow * Water.Temp, data =
stackloss))$coef↪→

Estimate Std. Error t value
(Intercept) 22.29030069 35.09601861 0.6351233
Air.Flow -0.51550885 0.57984497 -0.8890460
Water.Temp -1.93005822 1.58044278 -1.2212136
Air.Flow:Water.Temp 0.05176139 0.02477854 2.0889604
Pr(>|t|)
(Intercept) 0.53380403
Air.Flow 0.38638596
Water.Temp 0.23867188
Air.Flow:Water.Temp 0.05205945

This is an interesting situation. The interaction term of these variables is
marginally significant, and each individual effect isn’t significant apart from
the interaction. Let’s see how the third variable influences the response.

summary(lm(stack.loss ~ Air.Flow * Water.Temp * Acid.Conc.,
data = stackloss))$coef

Estimate
(Intercept) -3.835095e+03
Air.Flow 6.414455e+01
Water.Temp 1.864374e+02
Acid.Conc. 4.367229e+01
Air.Flow:Water.Temp -3.074347e+00
Air.Flow:Acid.Conc. -7.321000e-01
Water.Temp:Acid.Conc. -2.131307e+00
Air.Flow:Water.Temp:Acid.Conc. 3.537184e-02
Std. Error t value
(Intercept) 1.771119e+03 -2.165351
Air.Flow 2.935552e+01 2.185093
Water.Temp 8.989859e+01 2.073864
Acid.Conc. 2.006597e+01 2.176435
Air.Flow:Water.Temp 1.479097e+00 -2.078530
Air.Flow:Acid.Conc. 3.324893e-01 -2.201875
Water.Temp:Acid.Conc. 1.017941e+00 -2.093743
Air.Flow:Water.Temp:Acid.Conc. 1.674228e-02 2.112725
Pr(>|t|)

188 CHAPTER 13. LINEAR MODELS III

(Intercept) 0.04954646
Air.Flow 0.04778701
Water.Temp 0.05851935
Acid.Conc. 0.04855129
Air.Flow:Water.Temp 0.05802734
Air.Flow:Acid.Conc. 0.04633763
Water.Temp:Acid.Conc. 0.05644977
Air.Flow:Water.Temp:Acid.Conc. 0.05453733

This is an interesting and complex case as we have a marginally significant three
way interaction, and all other effects are at least marginally significant. We can
exclude the three-way interaction to see if that clarifies the situation.

summary(lm((stack.loss ~ (Air.Flow + Water.Temp + Acid.Conc.)ˆ2),
data = stackloss))$coef

Estimate Std. Error
(Intercept) -108.13059141 176.49073390
Air.Flow 2.32653047 2.64482119
Water.Temp -2.78892775 8.64066216
Acid.Conc. 1.44055540 1.95825282
Air.Flow:Water.Temp 0.05012641 0.02807059
Air.Flow:Acid.Conc. -0.03188801 0.02967467
Water.Temp:Acid.Conc. 0.01184376 0.09472983
t value Pr(>|t|)
(Intercept) -0.6126701 0.5499176
Air.Flow 0.8796551 0.3938952
Water.Temp -0.3227678 0.7516411
Acid.Conc. 0.7356330 0.4740992
Air.Flow:Water.Temp 1.7857268 0.0958144
Air.Flow:Acid.Conc. -1.0745868 0.3007319
Water.Temp:Acid.Conc. 0.1250267 0.9022800

But in this case it does not - reality seems to require the three way interaction -
all factors and all interactions would be significant at p=0.06. Fortunately, we
don’t need to interpret this model verbally2 for it to be useful - we can predict
which conditions will optimize the outcome, which would be useful in a process
control context, even though those of us coming from analytical backgrounds
may shudder at three-way interactions.

2Three way interactions (higher order interactions in general) are very difficult to interpret
- in this case, the effect of Acid concentration on stackloss depends on the combination of
airflow and water temperature.

13.3. ANCOVA 189

13.3 ANCOVA

In some cases we have both numeric and categorical predictors. For example,
the weed suppressiveness of a rye cover-crop depends partly on the biomass of
the rye, which is strongly affected by planting and termination dates of the rye.
In one study rye biomass was modeled as a function of planting date (early or
late) and terminated at one of five harvest dates (numeric). We’ll load some
data and have a look.

Rye <- read.csv("../Data/Rye-ANCOVA-2008.csv", comm = "#",
stringsAsFactors = TRUE)

head(Rye) # examine the data

The variable Tdate is days from the beginning of the growing season (April 15).
We’d expect that rye that is terminated later will produce greater biomass.

summary(lm(RyeDMg ~ Tdate, data = Rye))

#
Call:
lm(formula = RyeDMg ~ Tdate, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-195.779 -87.402 2.592 82.281 164.221
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 96.232 86.083 1.118 0.276
Tdate 16.963 2.715 6.249 2.74e-06 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 107.3 on 22 degrees of freedom
Multiple R-squared: 0.6396, Adjusted R-squared: 0.6232
F-statistic: 39.04 on 1 and 22 DF, p-value: 2.739e-06

Sure enough, we see an influence of termination date (Tdate). The model sug-
gests that rye terminated at the very beginning of the growing season would
only produce 96 g m-2 which is a reasonable value, and that each day of delay in
termination increases rye biomass by 17 g. But there could still be more going
on here. The rye was planted in the autumn, and the later planting missed more
of the warm autumn weather during it’s early growth phase.

190 CHAPTER 13. LINEAR MODELS III

summary(lm(RyeDMg ~ Plant, data = Rye))

#
Call:
lm(formula = RyeDMg ~ Plant, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-256.62 -115.16 24.06 83.00 332.87
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 689.25 46.68 14.766 6.73e-13 ***
PlantP2 -145.62 66.01 -2.206 0.0381 *

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 161.7 on 22 degrees of freedom
Multiple R-squared: 0.1811, Adjusted R-squared: 0.1439
F-statistic: 4.867 on 1 and 22 DF, p-value: 0.03812

This suggests that later planting in the autumn reduced biomass by 145 g m-2

. We should be able to combine these two effects with an ANCOVA.

summary(lm(RyeDMg ~ Tdate + Plant, data = Rye))

#
Call:
lm(formula = RyeDMg ~ Tdate + Plant, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-122.967 -65.880 -5.537 58.567 183.033
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 169.04 64.12 2.636 0.015429 *
Tdate 16.96 1.96 8.656 2.27e-08 ***
PlantP2 -145.62 31.61 -4.607 0.000152 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13.3. ANCOVA 191

#
Residual standard error: 77.43 on 21 degrees of freedom
Multiple R-squared: 0.8208, Adjusted R-squared: 0.8037
F-statistic: 48.08 on 2 and 21 DF, p-value: 1.45e-08

In the ANCOVA model we can see that the both the planting date and growing
time effects are very significant, and the R2 of this model is much better than
either of the separate models. The early planted rye begins the growing season
with about 170 g m-2 of biomass, while the later planted rye only has about
23 g m-2 3. It is possible that the longer growth time is more beneficial in one
group compared to the other. This would show in the model as a different slope
(Tdate coefficient) for the groups.

model1 <- lm(RyeDMg ~ Tdate + Plant + Tdate:Plant, data = Rye)
summary(model1)

#
Call:
lm(formula = RyeDMg ~ Tdate + Plant + Tdate:Plant, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-136.928 -59.276 -5.537 59.179 169.072
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 217.514 88.641 2.454 0.0234 *
Tdate 15.383 2.795 5.503 2.19e-05 ***
PlantP2 -242.565 125.358 -1.935 0.0673 .
Tdate:PlantP2 3.161 3.953 0.800 0.4333

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 78.1 on 20 degrees of freedom
Multiple R-squared: 0.8263, Adjusted R-squared: 0.8003
F-statistic: 31.71 on 3 and 20 DF, p-value: 8.487e-08

Here we see that the interaction term is not significant, so the slope (the effect of
harvesting date) is the same for both groups, or (more accurately) the difference
between the slope for the two groups is not different from zero (p=0.433.

3This represents the sum of the estimates for planting date 1 (interecept) and planting
date 2.

192 CHAPTER 13. LINEAR MODELS III

plot(RyeDMg ~ Tdate, data = Rye, col = Plant)
mcf <- summary(model1)$coef[, 1] #coefficient estimates only
abline(a = mcf[1], b = mcf[2])
abline(a = mcf[1] + mcf[3], b = mcf[2] + mcf[4], lty = 2,

col = "red")

20 25 30 35 40

30
0

60
0

90
0

Tdate

R
ye

D
M

g

For a more detailed treatment of multi-way ANOVA, see Chapter 9 of “Statis-
tics: An Introduction Using R” by Michael J. Crawley. Also see Chapter 16
of [Practical Regression and Anova using R] (https://cran.r-project.org/doc/
contrib/Faraway-PRA.pdf) by Julian J. Faraway, which is available as a pdf.

13.4 About Sums of Squares in R

Linear models in R are fit using the classic method of minimizing the sum of
the squared residuals. This is simple enough and can be solved analytically.
For more detail see SimpleR pg 77, or see [this page] (http://www.wired.com/
wiredscience/2011/01/linear-regression-by-hand/).

However, the F-tests used in ANOVA tests are also calculated using sums of
squares - the F-test for an effect is the mean square for the effect divided by the
mean square of the error, where the mean square is the sum of squares for that
effect divided by the degrees of freedom for the effect

This is all pretty straightforward when considering a one-way ANOVA, or a two-
or more way ANOVA with balanced data (no missing values). However, in the

https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf
http://www.wired.com/wiredscience/2011/01/linear-regression-by-hand/
http://www.wired.com/wiredscience/2011/01/linear-regression-by-hand/

13.5. RESISTANT LINEAR MODELS 193

real world of imperfect experiments and missing data it gets more complicated.
R by default calculates what are known as sequential sums of squares, or Type
I SS. Many other software packages provide what are known as Type III SS
(There are also Type II SS).

The differences in which sums of squares are calculated explains why a model fit
in R will not necessarily return the same results as if it were fit in SAS, SPSS,
or Minitab. Note that this does not mean that R is wrong. Type I SS are
sequential, meaning the order of terms in the model matters. In many cases it
can be argued that there is a logical order to the terms that reflects the design
of the experiment (e.g. block comes first, etc.).

See this article for a more complete explanation of Type I, Type II, and Type
III SS, and how they can be calculated in R.

13.5 Resistant Linear Models

There are resistant regression methods that are less susceptible to outliers. For
this step we’ll need to install the MASS package (install.packages("MASS")
will download and install the package). We’ll explore it a bit using the mtcars
data.

library(MASS) # load the package 'MASS'
data(mtcars) # load the data
boxplot(hp ~ cyl, data = mtcars)

4 6 8

50
15

0
30

0

cyl

hp

https://md.psych.bio.uni-goettingen.de/mv/unit/lm_cat/lm_cat_unbal_ss_explained.html

194 CHAPTER 13. LINEAR MODELS III

This boxplot should convice us that we may have a problem with heterogeneity
of variance which might invalidate a linear model. Let’s see how the resistant
model compares. Since cyl is coded as numeric but is really a factor (taking
only values 4, 6, or 8 in this data set), we’ll model it as a factor.

summary(lm(hp ~ factor(cyl), data = mtcars))

#
Call:
lm(formula = hp ~ factor(cyl), data = mtcars)
#
Residuals:
Min 1Q Median 3Q Max
-59.21 -22.78 -8.25 15.97 125.79
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 82.64 11.43 7.228 5.86e-08 ***
factor(cyl)6 39.65 18.33 2.163 0.0389 *
factor(cyl)8 126.58 15.28 8.285 3.92e-09 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 37.92 on 29 degrees of freedom
Multiple R-squared: 0.7139, Adjusted R-squared: 0.6941
F-statistic: 36.18 on 2 and 29 DF, p-value: 1.319e-08

summary(rlm(hp ~ factor(cyl), data = mtcars))

#
Call: rlm(formula = hp ~ factor(cyl), data = mtcars)
Residuals:
Min 1Q Median 3Q Max
-53.001 -21.227 -4.376 17.364 131.999
#
Coefficients:
Value Std. Error t value
(Intercept) 82.6364 10.0218 8.2457
factor(cyl)6 38.1156 16.0706 2.3718
factor(cyl)8 120.3642 13.3922 8.9877
#
Residual standard error: 32.35 on 29 degrees of freedom

13.6. SPECIFYING CONTRASTS. 195

The t-values are a bit larger for the resistant model. Note the resistant model
does not supply p-values. This is because calculating p-values depends on mak-
ing assumptions about the t-distribution which might not be met when regres-
sion assumptions are violated.

13.6 Specifying Contrasts.

In some cases we approach a data set with very specific questions, that we want
to answer. Consider the warpbreaks data: two types of wool and three levels of
tension, for 6 treatment groups:

data(warpbreaks)
unique(warpbreaks[, 2:3])

With 6 groups there are 15 possible comparisons, but the default treatment
coding used in summary(lm) only tests 5 of these:

summary(lm(breaks ~ wool * tension, data = warpbreaks))$coef

Estimate Std. Error t value
(Intercept) 44.55556 3.646761 12.217842
woolB -16.33333 5.157299 -3.167032
tensionM -20.55556 5.157299 -3.985721
tensionH -20.00000 5.157299 -3.877999
woolB:tensionM 21.11111 7.293523 2.894501
woolB:tensionH 10.55556 7.293523 1.447251
Pr(>|t|)
(Intercept) 2.425903e-16
woolB 2.676803e-03
tensionM 2.280796e-04
tensionH 3.199282e-04
woolB:tensionM 5.698287e-03
woolB:tensionH 1.543266e-01

We’re in luck if we want to compare: woolA:tensionL with woolB:tensionL
(row 2), woolA:tensionL with woolA:tensionM (row3), woolA:tensionL with
woolA:tensionH (row4). Row 5 represents the difference between the estimate
of woolB:tensionM generated by adding estimates 1,2, and 3 (the additive es-
timate) and the actual mean of woolB:tensionM (if this difference is small, we
say there is not an interaction of the 2 terms). Row 6 is analogous to row 5.
But what if we want to compare WoolA vs WoolB at each level of tension? We
need to specify our own contrasts. We can easily see that these differences may
be important by looking at the means:

196 CHAPTER 13. LINEAR MODELS III

with(warpbreaks, aggregate(breaks, by = list(wool, tension),
FUN = mean))

The difference between rows 1 and 2, 3 and 4, and 5 and 6 show our differences,
but don’t test them. To test these we need to define a matrix of contrasts. This
recreates the means for each contrast from the coefficients in the model.

m1 <- (lm(breaks ~ wool * tension, data = warpbreaks))
summary(m1)$coef

Estimate Std. Error t value
(Intercept) 44.55556 3.646761 12.217842
woolB -16.33333 5.157299 -3.167032
tensionM -20.55556 5.157299 -3.985721
tensionH -20.00000 5.157299 -3.877999
woolB:tensionM 21.11111 7.293523 2.894501
woolB:tensionH 10.55556 7.293523 1.447251
Pr(>|t|)
(Intercept) 2.425903e-16
woolB 2.676803e-03
tensionM 2.280796e-04
tensionH 3.199282e-04
woolB:tensionM 5.698287e-03
woolB:tensionH 1.543266e-01

So the treatment mean for woolA:tensionL would be the first coefficient only,
or we could specify it as the sum of the product of the vector of all coefficients
and the vector:c(1,0,0,0,0,0), which we’ll name AL. The treatment mean for
woolB:tensionL would be the first coefficient plus the second coefficient, or the
sum of the product of the coefficients and: BL=c(1,1,0,0,0,0). The difference
between them is AL-BL or c(0,-1,0,0,0,0). Similarly, woolA:tensionM
is: AM=c(1,0,1,0,0,0) and woolB:tensionM is BM=c(1,1,1,0,1,0) and
the difference is c(0,-1,0,0,-1,0). By extension, the final difference is
c(0,-1,0,0,0,-1).

Constructing these contrasts is the most confusing part of this procedure. You
can confirm that the last one is correct by taking the sum of product of the first
column of the coefficients and e.g c(0,-1,0,0,0,-1) (the tension H difference).
It will be the same as the wool difference for tensionH.

sum(summary(m1)$coef[, 1] * c(0, -1, 0, 0, 0, -1))

[1] 5.777778

13.6. SPECIFYING CONTRASTS. 197

means <- with(warpbreaks, aggregate(breaks, by = list(wool,
tension), FUN = mean))

means[5, 3] - means[6, 3]

[1] 5.777778

We can put these three contrasts together into a matrix like this (note there is
one row of the matrix per contrast):

cont.mat = matrix(c(0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0,
0, -1, 0, 0, 0, -1), byrow = TRUE, nrow = 3)

cont.mat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 -1 0 0 0 0
[2,] 0 -1 0 0 -1 0
[3,] 0 -1 0 0 0 -1

Now we can calculate our comparisons using the function glht() in the package
multcomp (you will probably need to install it unless you already have done so
- install.packages("multcomp").

library(multcomp)
tests <- glht(m1, linfct = cont.mat)
summary(tests)

#
Simultaneous Tests for General Linear Hypotheses
#
Fit: lm(formula = breaks ~ wool * tension, data = warpbreaks)
#
Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)
1 == 0 16.333 5.157 3.167 0.00795 **
2 == 0 -4.778 5.157 -0.926 0.73187
3 == 0 5.778 5.157 1.120 0.60281

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)

198 CHAPTER 13. LINEAR MODELS III

And there you have it. The first test (wool at tension L) is significant, but the
others aren’t. Notice that here we are only making 3 comparisons rather than
all 15, and so we conserve our statistical power.

As noted above, making the contrast matrix is the key (and confusing) step
here. Be aware that subsequent changes to the model will change the contrast
matrix.

13.6.0.1 For more information:

Chapter 9 (“Statistical Modeling”) in “The R Book” by Michael Crawley has
a very good introduction to this topic beginning at Section 9.25. He includes
details on several other approaches and goes into more detail.

A good introduction to testing contrasts using the package “multcomp” can be
found [here] (http://www.ats.ucla.edu/stat/r/faq/testing_contrasts.htm)

13.7 More Complex Designs

It is beyond the scope of these notes to fully consider more complex models such
as split-plot designs, nested designs, and mixed effects models. The chapter on
“Analysis of Variance” (Ch11) in “The R Book”, by Michael Crawley, has some
very good examples, and several are to be had by searching the “R-help” mailing
lists (See the “Support Lists” tab in the search results at Rseek).

A split-plot design means that one treatment or factor is applied to larger units
(“whole plot” or “main plot”), and subunits of those larger units (“subplot”)
receive other treatments. Here we’ll compare two factors - “A” vs “B” and “1”
vs “2”. In a completely random design (CRD) all combinations are randomly
assigned to locations (First figure). In a split plot one factor (in this example,
“A” vs “B”) is assigned to larger plots, and the subplots are randomly assigned
to the other factor (in this case “1” or “2”)

http://www.ats.ucla.edu/stat/r/faq/testing_contrasts.htm
www.rseek.org

13.7. MORE COMPLEX DESIGNS 199

1:16

1:
16

Completely Random

A2 B1 B2 A1

B2 B1 B2 A2

A1 B1 A2 B1

B2 A2 A1 A1

1:16

1:
16

Split Plot

A

A

B

B

B

B

A

A

2

1

1

2

1

2

1

2

2

1

2

1

2

1

2

1

By way of an introductory example, we’ll consider a rather simple split-plot
design here. The data is from the study on cereal rye winter cover-crops intro-
duced above. Cereal rye was sown at two dates in the autumn (PD, a factor)
and was killed at 5 dates in the spring (Tdate, given as days after April 15),
when biomass (RyeDM, g m-2) was measured. Planting date was the main plot (2
per block) with the subplots randomly assigned to combinations of termination
date (5 per main plot)4.

factorial design with 12 sub-plots per main plot.
Rye <- read.csv("../Data/RyeSplitPlot.csv", comm = "#",

stringsAsFactors = TRUE)↪→

summary(Rye)

P.date T.date WdCon Rep RyeDM
P1:20 T1:8 SC:40 I :10 Min. : 104.0
P2:20 T2:8 II :10 1st Qu.: 454.8
T3:8 III:10 Median : 636.0
T4:8 IV :10 Mean : 630.0
T5:8 3rd Qu.: 816.0
Max. :1256.0
P.day T.day
Min. :257.0 Min. :480.0
1st Qu.:257.0 1st Qu.:492.0
Median :272.5 Median :500.0
Mean :272.5 Mean :500.8
3rd Qu.:288.0 3rd Qu.:513.0
Max. :288.0 Max. :519.0

4This design was selected for logistical reasons - given the equipment available, it was
simpler to plant larger plots and kill sub-plots ad different times. The rye cover crop was
killed with a roller-crimper rather than with herbicides, so killing small plots was feasible.

200 CHAPTER 13. LINEAR MODELS III

We can see we have 2 levels of PD, 5 of Tdate, and 4 for Rep (block).

The simplest approach to analyzing this as a split plot is to use the function
aov() and specify the error structure using the argument Error. First we’ll
ignore the split-plot:

summary(aov(RyeDM ~ Rep + P.date + T.date, data = Rye))

Df Sum Sq Mean Sq F value Pr(>F)
Rep 3 72833 24278 1.938 0.144014
P.date 1 216531 216531 17.283 0.000235 ***
T.date 4 2043518 510879 40.778 6.28e-12 ***
Residuals 31 388379 12528

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

It is easy to fit this model and forget that it is wrong, since the split plot design
has not been included. Now we’ll fit the split-plot model.

summary(aov(RyeDM ~ Rep + P.date + T.date + Error(Rep/P.date),
data = Rye))

#
Error: Rep
Df Sum Sq Mean Sq
Rep 3 72833 24278
#
Error: Rep:P.date
Df Sum Sq Mean Sq F value Pr(>F)
P.date 1 216531 216531 8.152 0.0648 .
Residuals 3 79686 26562

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
T.date 4 2043518 510879 46.34 5.92e-12 ***
Residuals 28 308693 11025

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

13.8. EXERCISES 201

The Error(Rep/Plant)tells us that the units of the variable Plant are within
the units of Rep. The units of Tdate are within Plant, but this doesn’t need
to be specified as this is the smallest unit. This gives us an ANOVA table
split according to the error term used in the F test, and we can see that the
main plot (Plant) effect is tested against the interaction of block and main
plots (Rep:Plant). This results in a larger (in this case marginally significant)
p-value. The larger p-value is because the correct error term is used here. A
split-plot design has more power to detect differences in the split-plot factor and
less power to detect those in the whole plot factor. Incorrect analysis of these
designs is surprisingly common.
Notice that the predictor variables (effects) in the right-hand side of the formula
are listed from physically largest to smallest rather than in order of our interest -
this probably makes sense given that we are working with Type I sums of squares
here - there is a natural ordering of the effects based on the construction of the
experiment.
Later we’ll consider another way to test this is as a linear mixed-effects model
using the function lme() from the package “nlme”.

13.8 Exercises

1) The built in data set trees has data for diameter, height, and timber volume
for 31 trees. How well does the volume of a cone (0.333 x height x radius2 x π)
predict the timber volume (fit a regression between the measured and calculated
volume). Note that volume is in cubic feet, height is in feet, and diameter is in
inches (divide by 12 for feet). How does this differ from the model that uses the
product of height and diameter squared as the only predictor? Note on units
The variable named “Girth” is actually diameter according to the help file for
the data set. See ? trees.
2) For the beans data test whether shoot biomass alters the relationship between
root biomass and root length we explored in exercise 1 of Chapter 11. (That
is, is there an interaction between shoot biomass and root biomass in modeling
root length)
3) In exercise 3 and 4 of Chapter 12 we began looking at the “electric bill” data.
Here is an ANCOVA problem. In April of 2008 (month 57 of occupancy) we
added insulation to the roof of the house. How did this affect the relationship
between daily energy use and average temperature? Add a factor for with and
without insulation, and add this factor to the quadratic model. How does this
affect the fit of the model (consider residual distributions and R2)
4) Does the effect of adding insulation alter the coefficients of the relation-
ship between temperature and daily electric consumption? (Do the avgT and
I(avgTˆ2) terms interact with the insulation factor?)
EXTRA What is wrong with the model in #3 and #4?

202 CHAPTER 13. LINEAR MODELS III

Chapter 14

Productivity Tools in R

More advanced documentation and managing
projects

14.1 Introduction

Since version 0.96.122, RStudio has included tools to allow easy use of markdown
to produce dynamic reports. Here we’ll briefly explore how we can use this
to document analytical work in R. (Markdown is a simple markup language
created by people with an appreciation for irony). There are many parallels
between using markdown and compiling notebooks from R scripts (Chapter 4)
- markdown just gives a slightly higher level of control.

As noted in Chapter 4, to fully document statistical analysis, we need to have:
1) the R code; 2) the output from R code (statistical tables, etc); 3) the figures
we generate; and 4) the appropriate commentary and narrative.

I’ve noted earlier the importance of keeping well commented code files, which can
cover 1) and 4), but the code has to be run to create 2) and 3). In Chapter 4 we
saw how the “compile notebook” functionality in knitr allows us to create html
documents from our R script files. While generally adequate for the purposes
of homework assignments, one might find that they don’t offer all the features
that one might want.

The combination of knitr and markdown solve this problem – we can have all
four components in one file 1. The highlights are:

1. Code and commentary stored in one file.
1Sort of - as we’ll see it may be thought of as 2 files.

203

204 CHAPTER 14. PRODUCTIVITY TOOLS IN R

a. both data manipulation and analysis code stored

b. ability to have extensive commentary w/o commenting out every line

c. ability to apply basic formatting to non-code commentary

d. ability to keep code that is not run for reference

e. ability to produce figures without showing the code that produces
them

2. Statistical output and figures easily kept with the code that produced
them.

3. Easy to go back and re-run or update analyses.

Using markdown and knitr in RStudio it is almost trivially easy to put this
all in one file. The markdown file is easily readable plain text and permits
simple text formatting. R code is included in discrete “chunks”. Knitr will
process (“knit” or “compile”) the markdown file into HTML (or pdf or .docx)
that includes the code and the output from that code.

Knitr “chunk options”” allow the user to specify whether code chunks are eval-
uated, (if something didn’t work but you want to keep a record of how you tried
it, a chunk that isn’t evaluated is perfect), and whether the code itself is shown
in the HTML file (perfect for figures). Chunk options also allow size of figures
to be customized.

14.2 Getting stated with markdown

In the RStudio editor pane choose File>New>R Markdown. You’ll be prompted
to select type - at this point select “Document”. If you haven’t used knitr
already you may be prompted to install the knitr package, in which case type
install.packages("knitr",dep=T). RStudio will open a new tab in the editor
that is a basic template.

Examining this template will reveal some special features:
1. Unlike an R script file which can only contain comments and R code, a
markdown file contains plain text and some special “chunks” delimited by special
“fences”.
2. Code chunks are fenced by lines containing ‘```’, and contain R code and
comments.
3. For the “opening fence” the ‘```’ is followed by ‘{r}’
4. In some chunks there are ‘chunk options’ following the ‘r’ in curly braces.

14.2. GETTING STATED WITH MARKDOWN 205

For example `{r, echo=FALSE}`tells knitr to execute the code in this chunk
but not to include the code itself in the output. This can be used to show only
the plots and note the code that produced them.2
5. Some areas within the plain text part of the file are fenced with single `,
such as ‘`echo=FALSE`’. These areas are formatted as code in the compiled file.
This is known as inline code.
6. There is a header that is fenced by lines containing “—”. This contains
details such as the title, the author and date, and the type of output. Other
features can be added here, such as table of contents, but that is beyond this
basic intro.3

Markdown is a simple markup language, and text not within code chunks is
formatted according to markdown rules. Up to six levels of headers are possible,
as well as italics, boldface, super and subscript, and simple tables. LaTeX style
equations can also be included. More document customizations incuding tables
of contents are possible, but are not discussed here 4.

14.2.1 Key Features

Inline code such as `mean(some.data)` will not be evaluated, but adding an r
followed by a space (e.g. `r mean(some.data)`) at the beginning of the inline
code will flag that inline code to be evaluated. This is useful when discussing
results of an analysis, e.g. inserting a p-value into your text by linking to the
analysis.

The “. . . ” in {r ...} stand for “chunk options”. The first option is preceded by
a space, and all others are separated by commas, without any spaces. The first
option is a “chunk name”. You can navigate to named chunks from the pull-
down menu on the lower left margin of the editor tab. The options commonly
used options are:

• eval=FALSE - means don’t evaluate this chunk - useful for keeping code
you don’t want to run, but don’t want to delete.

• echo=FALSE - means run the code but don’t print it - useful for figures
where you want to show the figure not the code you used to make it. If
I’m preparing a report for my boss, I use this a lot.

• fig.width=x; fig.height=y - controls width and height of figures
(dimensions in inches).

2More information of advanced document features can be found [here] (http://rmarkdown.
rstudio.com/html_document_format.html)

3The header is sometimes referred to as the “YAML metadata block”.
4More information of advanced document features can be found [here] (http://rmarkdown.

rstudio.com/html_document_format.html)

http://rmarkdown.rstudio.com/html_document_format.html
http://rmarkdown.rstudio.com/html_document_format.html
http://rmarkdown.rstudio.com/html_document_format.html
http://rmarkdown.rstudio.com/html_document_format.html

206 CHAPTER 14. PRODUCTIVITY TOOLS IN R

• Note that the echo and eval chunk options can specify line numbers, so
echo=-1 means echo all the code in the chuck except line 1.

• fig.cap - allows you to specify captions for a figure. Implies one figure
per chunk.

14.2.2 Other useful information:

• Ctrl+Alt+I inserts a new chunk (Mac: Opt+Cmd+I)
• Ctrl+Alt+C runs the current chunk
• Ctrl+Alt+N runs the next chunk
• Ctrl+Enter runs the current line just like in an R script file
• a line like:

`knitr::opts_chunk$set(fig.width=4.5,fig.height=3,tidy=TRUE,cache=TRUE)`

early after the title block sets global options for a document. The cache=TRUE
option speeds up compilation for the second and following times a document in
knit, but can occasionally cause surprise errors - use at your own risk
* As with the notebook feature, R code run when knitting a document is eval-
uated in a separate environment. This means that your R workspace is not
accessible by this code, so you have to make sure ALL the necessary code is
in your chunks. This most often causes errors when data or packages that the
code needs haven’t been loaded. Another possible source of errors is not having
the CRAN mirror set correctly. 5

Click the ‘Help’ menu in the RStudio menubar and select “Markdown Quick
Reference” to bring up a short reference in the help viewer. A more extensive
description is available online - selecting “Using R Markdown” from the “?” will
open this link in your browser.
Finally, the full list of chunk options is detailed at the knitr website. Note that
not all of the options listed here function in markdown - some only operate in
“sweave” files (.rnw), which allow R code to be embedded and evaluated within
LaTeX documents6.
One of the great advantages of this method of documenting your work is that you
can easily update an analysis by updating the data file and running the analysis
again. Important conclusions (e.g. p-values) can be in inline code chunks, so R
just updates them too.
An important note - each code chunk gets a fresh graphics device, so if you ran
(for example) par(mfrow=c(1,2)) to divide the plotting window in one chunk,
it will not be divided in the next chunk.

5To set the CRAN mirror go to “Tools>Global Options” (Mac: “RSTudio>Preferences”)
and select the “Packages” tab and select a CRAN mirror from the menu - the nearest one is
probably best.

6If you are comfortable with LaTeX you can use File>New>RSweave to open a LaTeX file
that you can insert code chunks into, but the syntax is different than markdown.

http://yihui.name/knitr/options

14.3. MANAGING PROJECTS 207

The file “knitr-markdown demo.rmd” in your “Essential R” folder is a demon-
stration of many features of R markdown.

14.3 Managing projects

Using a tool like markdown makes it easier to keep your thinking documented.
One of the challenges of any kind of analytical work is keeping track of many
different files. Typically most users use directories (folders) to group documents
related to particular projects. RStudio makes this easy with project feature.
The project menu is located in the upper right corner of the RStudio window.
(Highlighted in red)

Figure 14.1: Project Menu

If you click on the project menu you see options to create a new project, to open
a project, and there are shortcuts to the recent projects.

When a project is created it is associated with a directory, and a file with
extension .Rproj is created in the folder. The workspace and the R Studio
window state is saved. That means that if you open a saved project it opens
with the same files open in the editor and the same objects in the workspace
as when it was closed. This is very handy. For those (like me) who don’t want
to be completely reliant on RStudio, it is nice to know that your script files are
saved normally and the workspace is saved as a hidden file (*.Rdata), so you’re
not “locked in” to using RStudio when you use the project feature.

RStudio also includes integration for version control tools (git and subversion)
for projects. It is relatively simple to host an R project on e.g. github for
sharing with multiple users, version control, and offsite backup. For details
see [RStudio.com] (https://support.rstudio.com/hc/en-us/articles/200532077?
version=1.2.5033&mode=desktop)

https://support.rstudio.com/hc/en-us/articles/200532077?version=1.2.5033&mode=desktop
https://support.rstudio.com/hc/en-us/articles/200532077?version=1.2.5033&mode=desktop

208 CHAPTER 14. PRODUCTIVITY TOOLS IN R

14.4 Using R and LaTeX via Knitr

Those who need much more control in formatting, or who already use LaTeX
will be glad to know that knitr supports the inclusion and execution of R code
in the context of LaTeX documents. To explore the features of LaTeX is beyond
the scope of this class, but we will demonstrate the basic features.

You can open a new .rnw file from the file menu: File > New > Rsweave. Or
open the file “RNW-test.Rnw” in the “Code Files” directory. This is a minimal
example.

Notice a few features: Code blocks begin with <<>>= and end with @. Chunk
options can be specified between the << and >>= that precede the code block.

To compile this to .pdf, you need to configure RStudio a bit 7. Open RStudio
Preferences, and select the “Sweave” tab. Under “Weave Rnw files using:” and
select “knitr”. You should now be able to click “Compile PDF” from the top of
the editor pane.

There are many examples such as this online.

14.5 Exercises

1) Take the homework assignment from last chapter and reformat it as an .rmd
document (this means convert all the commentary to text, using appropriate
headings; code comments can be left as comments). Choose one graph and hide
the code that produces it (only for this assignment!), and use inline code to
show results from some model or calculation. Compile this to an html file, and
submit the html file for your homework.

7You will probably also need to install LaTeX if you don’t already have it installed, and
you may need to install additional software. This will be OS specific, and I don’t cover it
here. If you are using LaTeX, you can figure it out.

http://www.biostat.uzh.ch/teaching/master/sc13/presentation_sweave.pdf

14.5. EXERCISES 209

Figure 14.2: Preferences

210 CHAPTER 14. PRODUCTIVITY TOOLS IN R

Chapter 15

Visualizing Data I

Enhancing scatter plots

15.1 Introduction

So far we have used R’s graphics in fairly straightforward ways to examine data
or look for model violations. But sometimes we need to do more. While creating
publication quality plots is not something everyone will do, being able to create
more complex graphics can be a great assist in data analysis, and the ability to
customize graphics to visualize data is one of the strengths of R 1.

In this chapter and the next we build up some pretty complex figures from basic
building blocks. Some of the examples are fairly complex - but my hope is that
you can follow along to see what is possible by combining basic building blocks.

I chose the title “visualizing data” here because while one goal of making figures
is communication, I often find (especially with more complex data) that I can
understand the data better when I find the right way to visualize it. A resource
that may be useful when considering how to visualize some data is the R graph
gallery.

There are some R packages that provide more “advanced”” plotting interfaces
(e.g. ggplot2 and lattice), and you may want to have a look at these. Here,
in the spirit of learning “essential” R, we’ll focus on base R. Learning to use the
basic plotting functions and graphical parameters can provide great flexibility
in visualizing data. In this session we’ll focus on scatter plots.

1In fact, I often see info-graphics online or in print publications that are almost certainly
made with R, in places like the New York Times

211

http://rgraphgallery.blogspot.com
http://rgraphgallery.blogspot.com
https://blog.revolutionanalytics.com/2011/03/how-the-new-york-times-uses-r-for-data-visualization.html

212 CHAPTER 15. VISUALIZING DATA I

15.2 Basic Scatter Plots

15.2.1 A simple scatter plot

Here we’ll look at the relationship between weed seed-bank density (number
of weed seeds in soil) and weed density (number of growing weed plants) in
conventional and herbicide-free plots. (This data set only contains the means).

DT <- read.delim("../Data/DataVizEx1.txt", stringsAsFactors =
TRUE)↪→

summary(DT)

Den Manag SeedDen TotDM
H:2 C:3 Min. : 300.0 Min. : 4.84
L:2 O:3 1st Qu.: 562.5 1st Qu.: 26.15
M:2 Median :1350.0 Median : 45.05
Mean :1600.0 Mean : 66.91
3rd Qu.:2700.0 3rd Qu.: 85.81
Max. :3150.0 Max. :187.29
Den1 Den2 Den3
Min. : 5.208 Min. : 4.292 Min. : 0.800
1st Qu.:11.630 1st Qu.: 7.375 1st Qu.: 3.799
Median :24.521 Median :15.333 Median : 6.868
Mean :27.142 Mean :17.733 Mean : 7.959
3rd Qu.:41.896 3rd Qu.:26.604 3rd Qu.:11.674
Max. :53.583 Max. :36.354 Max. :17.167
DenF
Min. : 2.120
1st Qu.: 4.942
Median :10.197
Mean :11.297
3rd Qu.:17.609
Max. :22.000

We have seed-bank density as a factor (Den) and as a continuous variable
(SeedDen), and weed density (weeds per meter2) at four time points (Den1
to DenF). We’ll look at the relationship between seed-bank density and weed
density at the first count. We’ll use with() to avoid repetition of DT$.

with(DT, plot(SeedDen, Den1)) # make the plot
plot(Den1 ~ SeedDen, data = DT, col = Manag)

15.2. BASIC SCATTER PLOTS 213

500 1500 2500

10
20

30
40

50

SeedDen

D
en

1

500 1500 2500

10
20

30
40

50
SeedDen

D
en

1

We have two points at each of three levels of weed seed-bank density. Is there a
consistent difference between our two treatments - O(rganic) vs. C(onventional)?
In the second plot we coded point color by treatment.

We can see that one set of points is consistently above the other. Which is
which? They are coded as C and O, and the level that is first alphabetically (C
in this case) will be represented in black, the next in red, and so on through all
the colors in the palette (use palette() to view or change the palette).

Let’s try adding some lines here - we’ll use lines() draws lines (defined by
vectors x= and y=) on an existing plot.

with(DT, plot(SeedDen, Den1, col = Manag))
with(DT, lines(SeedDen, Den1))
with(DT, plot(SeedDen, Den1, col = Manag)) # second plot
lines(x = c(1000, 2000, 500), y = c(30, 45, 27)) # not same as
lines(x = c(500, 1000, 2000), y = c(27, 30, 45) - 1, col = "red")

214 CHAPTER 15. VISUALIZING DATA I

500 1500 2500

10
20

30
40

50

SeedDen

D
en

1

500 1500 2500

10
20

30
40

50

SeedDen

D
en

1
-1 y-axis offset on the red to avoid overplotting

This line was not exactly what we had in mind. A quick look at the data is
instructive - 300, 300, 1350, 1350, 3150, 3150 - there are 2 values for each x
value. The line created by lines() follows the x= vector literally - 2 at 300, 2
at 1350, etc. The order of elements in the x= and y= arguments matters. We
can confirm this by plotting some arbitrary lines on the second plot (the second
is offset -1 in the y direction for clarity). The same three points are plotted but
in different order.

15.2.2 A simple scatter plot revisited

Let’s try again with the same data. We’ll use different symbols for our treat-
ments, and we’ll add proper axis labels. We’ll fully parse the code following the
code block and plot.

op <- par(mar = c(4, 4.5, 0.5, 0.5))
sym <- c(21, 24) # define vector of symbols
with(DT, plot(SeedDen, Den1, pch = sym[Manag], ylab =

expression(paste("Weed density",↪→

" (plants ", mˆ-2, ")")), xlab = expression(paste("Weed
seedbank (seeds ",↪→

mˆ-2, ")"))))
plot with nice axis labels
lines(DT$SeedDen[DT$Manag == "C"], DT$Den1[DT$Manag == "C"],

lty = 1)
add line for trt C
lines(DT$SeedDen[DT$Manag == "O"], DT$Den1[DT$Manag == "O"],

15.2. BASIC SCATTER PLOTS 215

lty = 2)
add line for trt O
legend("bottomright", inset = 0.025, pch = sym, lty = 1:2,

c("Conventional", "Hebicide Free")) # add legend

500 1000 2000 3000

10
20

30
40

50

Weed seedbank (seeds m−2)

W
ee

d
de

ns
ity

 (
pl

an
ts

 m
−2

)

Conventional
Hebicide Free

That is a basic, but clean plot that clearly shows the differences. There are quite
a number of things to note here since we are including many common elements
of quality plots (most of which we’ll use repeatedly in this chapter and the next):
1. We selected 2 plotting symbols in our vector sym, and indexed these based on
levels of the variable Manag (the pch=sym[Manag] in the plot command, anal-
ogous to the use of col=Manag in the preceding plot). “pch=” means “plotting
character”; see ?points for a list of the valid plotting characters. 2. We used
expression() to allow a superscript in our axis label, and paste to combine the
mathematical expression (mˆ-2) with the plain text ("Weed density (plants
" and ")") parts of the label 2.
3. We used logical extraction ([DT$Manag=="C"]) to specify which part of the
data to plot for each of the two lines.
4. lines() creates a line from point to point, not a trend-line - we could
use abline(lm(De1~Den2,data=DT) with the appropriate logical extraction for
that).
5. while legend() can be complex, in many cases (like this one) it is pretty
simple - we just specify line type (lty=), plotting symbol (pch=), and the legend
text.
6. We used par(mar=c(bottom,left,top,right)) to set the margin around

2Note that the text string Weed density"," (plants " is broken into 2 pieces - this is not
necessary for R, but results in neater line wrapping in these notes.

216 CHAPTER 15. VISUALIZING DATA I

each plot. mar= is expressed in lines of text, so it changes as cex= is changed
(this assures that margins will be large enough for axis labels). Here we use low
values for top and bottom.

Note: It is a worthwhile exercise is to take the code for this last plot and go
through it line by line, commenting out lines and changing arguments to see
how they work.

15.3 Multi-Panel Plots I: Layout

It is often the case that we want to show multiple graphs at once in a combined
layout. We’ve seen how par(mfrow=c(rows,columns)) can be used to split
the plotting window. However, the function layout() provides a much more
flexible tool to do this.

layout(matrix(c(1, 2, 3, 3, 0, 4), nrow = 3, byrow = TRUE),
heights = c(1, 1.5, 1), widths = c(1, 1.5))

layout.show(4) # show the first 4 plots in the layout

1 2

3

4

A couple of things to notice here: 1. layout() takes as it’s first argument a
matrix of plot numbers
2. Plot widths and heights can be manipulated
3. Not all parts of the plotting window need to contain plots
4. layout.show() lets us see the layout
Since this layout contains 4 plots, the next 4 times the plot command is called

15.3. MULTI-PANEL PLOTS I: LAYOUT 217

(unless new=TRUE is used to force over-plotting - see ?par or the discussion of
adding a second y axis near the end of this chapter for more).

When developing complex graphics, I often find it very useful to force my
plot to a specified size. This lets me be sure that my choices for symbol
and text size, legend placement, margins, etc. all work together the way I
want them to3. There are several ways to do this. For developing a plot I
use the function quartz(title,height,width) 4 (quartz() is OSX only) or
x11(title,height,width) (Linux or Windows) to open a new plotting window
whose size I can control. Alternately, in RStudio you can choose “Save plot as
image” from the “Export” menu on the “Plots” tab, and then specify the dimen-
sions you want for the plot. If using markdown the chunk options fig.width=
and fig.height= allow you to control plot size in the final document 5.

Here we’ll make a multi-panel figure with 3 plots. Each panel will be similar to
the scatter plot we made in part 2, but will show other response variables, and
the response variables are called by column number rather than by name. As
before, we’ll parse the code after the plot.

layout(matrix(c(1, 2, 3, 0), nrow = 4), heights = c(1, 1,
1, 0.5))

sym <- c(21, 24) # plotting characters to use
par(mar = c(0.1, 4.3, 0.1, 1), bty = "l")
set margins and plot frame type plot 1
with(DT, plot(SeedDen, DT[, 7], pch = sym[Manag], xaxt = "n",

xlab = "", ylab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 7],

lty = 1)
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O", 7],

lty = 2)
text(300, max(DT[, 7]) * 0.97, "Mid season density", pos = 4,

cex = 1.2)
mtext(side = 2, line = 2.5, at = -1, text =

expression(paste("Weed density (plants ",↪→

mˆ-2, ")")), cex = 0.9)
legend("bottomright", inset = 0.025, pch = sym, lty = 1:2,

c("Conventional", "Herbicide free"))
plot 2
with(DT, plot(SeedDen, DT[, 8], pch = sym[Manag], xaxt = "n",

3When you change the size of the plot window, graphic elements are re-sized, and sometimes
this doesn’t make you figure more readable. You can see this by observing how a plot changes
when you click the “Zoom” button above the plot and re-size the window.

4The units are inches - I have no idea why inches and not cm!
5When developing complex graphics, I usually include a call to quartz() that specifies

the for the figure as the first line in the plot chunk. I also include the the chunk options
fig.width= and fig.height= specifying the same dimensions as the call to quartz(), and the
chunk option eval= -1 so the call to quartz() is ignored when compiling.

218 CHAPTER 15. VISUALIZING DATA I

xlab = "", ylab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 8],

lty = 1)
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O", 8],

lty = 2)
text(300, max(DT[, 8]) * 0.97, "Final density", pos = 4, cex =

1.2)↪→

plot 3
with(DT, plot(SeedDen, DT[, 4], pch = sym[Manag], ylab = "",

xlab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 4],

lty = 1)
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O", 4],

lty = 2)
text(300, max(DT[, 4]) * 0.97, "Final biomass", pos = 4, cex =

1.2)↪→

mtext(side = 1, line = 2.5, text = expression(paste("Weed
seedbank (seeds ",↪→

mˆ-2, ")")), cex = 0.9)
mtext(side = 2, line = 2.5, text = expression(paste("Biomass (g

",↪→

mˆ-2, ")")), cex = 0.9)

15.3. MULTI-PANEL PLOTS I: LAYOUT 219

5
10

15
Mid season density

W
ee

d
de

ns
ity

 (
pl

an
ts

 m
−2

)

Conventional
Herbicide free

5
10

15
20

Final density

500 1000 1500 2000 2500 3000

0
50

10
0

15
0

Final biomass

Weed seedbank (seeds m−2)

B
io

m
as

s
(g

 m
−2

)

This is a fair amount of code for just one figure (though a lot of it is re-
peated between panels). Things to notice: 1. The call to layout() creates
a space for the common x-axis below the bottom plot - the 0th plot - try
layout.show(3). Alternately we could have skipped layout() and used the
arguments oma=c(4.2,0,0,0), mfrow=c(3,1) in the initial call to par(). The
approach we used here is a bit more flexible, as we can size the plots differently
if we wanted to, which we couldn’t do using mfrow=. 2. legend() was only
needed once because all the plots have the same legend.
3. the graphical argument xaxt="n" was used to suppress the plotting of the x
axis in the first 2 plots.
4. To keep x and y axis labels from printing we used xlab="" and ylab="" in all
the plots. We could have added the axis label for the final plot using xlab=, but
we would also need to add the argument xpd=NA to allow plotting to overflow
into the adjacent area.
5. The “Weed density” y axis label was added in plot 2 using mtext() - in prin-

220 CHAPTER 15. VISUALIZING DATA I

ciple it could have been added in any of the plots, since the at= argument allows
us to specify where on the axis it will be centered. at=2 specifies centering at
y=2. (Panels 1 & 2 have the same y axis units so we’ve centered the label over
both of them).

15.3.1 Loops for multi-panel figures.

The preceding plot required ~30 lines of code. This is typical for multi-panel
plots, at least using base R. ggplot2 and lattice have functions that make
something like this simpler, but I usually stick with base R, partly because I
know I can add elements to the plot. Notice that when you look at the code, most
of it appears repeatedly with only minor variations. This might suggest using
a loop. We won’t re-create the plot here for brevity’s sake, as it is essentially
identical to the above plot . But I encourage you to run this code and look at
how it works - you’ll want to size the plotting window as discussed above.

par(mfrow = c(3, 1), oma = c(4.1, 0, 1, 0), mar = c(0.1, 4.3,
0.1, 1), bty = "l")

vars <- c(7, 8, 4) # the column # for each response variable
sym <- c(21, 24) # plotting characters to use
labs <- c("", "", "", "Final biomass", "Rye", "Rye termination",

"Mid season density", "Final density") # plot labels
for (i in vars) {

begin loop for panels
with(DT, plot(SeedDen, DT[, i], pch = sym[Manag], xaxt = "n",

xlab = "", ylab = "")) # plot the ith column
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C",

i], lty = 1)
add lines
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O",

i], lty = 2)
text(300, max(DT[, i]) * 0.97, labs[i], pos = 4, cex = 1.2)
if (i == 4) {

add x axis for the last plot only (i==4)
axis(side = 1, at = seq(500, 3000, 500))
mtext(side = 1, line = 2.5, text = expression(paste("Weed

seedbank (seeds ",↪→

mˆ-2, ")")), cex = 0.9)
mtext(side = 2, line = 2.5, text =

expression(paste("Biomass (g ",↪→

mˆ-2, ")")), cex = 0.9)
}
if (i == 7)

{
mtext(side = 2, line = 2.5, at = -1, text =

expression(paste("Weed density",↪→

15.4. ADDING A SECONDARY Y-AXIS 221

"(plants ", mˆ-2, ")")), cex = 0.9)
y axis label for first 4 plots
legend("bottomright", inset = 0.02, legend =

c("Conventional",↪→

"Herbicide free"), pch = sym, lty = c(1, 2),
ncol = 2)

} # y axis for last plot
} # end loop for panels

Things to notice: 1. the loop is indexed by the vector vars which refers to the
column numbers of the response variables.
2. the legend in the first plot is side-by-side rather than stacked - the argument
ncol=2 allows this.
3. the code to create the x-axis for the final plot could have been moved outside
the loop, avoiding another if().

Was it worth it? The code was somewhat reduced - 18 vs 24 lines of code.
I’m not sure that justifies the added complexity. The main benefit (in my
experience) is that the “guts” of the plot are only here once - this makes it
much simpler to change something (plotting character or line type) and keep all
the panels consistent. This suggests that it is more likely to be worth using a
loop for a figure if all panels are very similar and when there are many panels.

15.4 Adding a Secondary y-axis

Occasionally we want to add a second y-axis to a plot to plot more than one
response variable. Since plot() also creates a new coordinate space with ap-
propriate units, this does not seem that it would help us.

One way this can be done is using points() to add the second variable, but
first we’d need to convert the second response variable to the same scale as the
first, and we might need to fool around with the ylim argument in the initial
plot command. Workable, but probably a hassle.

There is an easier way, though it may seem counter-intuitive. One of the argu-
ments to par() is new=. A value of new=TRUE (counter-intuitively) tells R to
treat the current graphics device as if it were a new device. This means that a
new coordinate space is calculated, and a second plot can be made without the
first having been erased.

par(mar = c(4.1, 4.1, 3, 4.1))
beans <- read.csv("../Data/BeansData.csv", comm = "#",

stringsAsFactors = TRUE) # load data↪→

with(beans, plot(ShtDM, RtDM, xlab = "Shoot biomass (g)",

222 CHAPTER 15. VISUALIZING DATA I

ylab = "Root biomass (g)"))
par(new = TRUE)
with(beans, plot(ShtDM, rt.len, xaxt = "n", yaxt = "n", ylab =

"",↪→

xlab = "", pch = 24, bg = "grey"))
axis(side = 4)
mtext(side = 4, line = 3, "Root length (m)")
legend("top", inset = c(0, -0.15), pch = c(21, 24), pt.bg =

c("white",↪→

"grey"), legend = c("Biomass", "Length"), ncol = 2, xpd = NA,
cex = 0.9)

0.5 1.0 1.5 2.0 2.5

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Shoot biomass (g)

R
oo

t b
io

m
as

s
(g

)

20
0

30
0

40
0

50
0

R
oo

t l
en

gt
h

(m
)

Biomass Length

Notice the inset=c(0,-0.15) and xpd=NA in the call to legend() - This allows
the legend to plot in the marginal space, outside the plot area. If you run this
command without the xpd=NA you will see why it was added. NOTE: These
two y variables may not really good candidates for this type of presentation!

In the last two sessions we have covered the most commonly used graphical tools
in R (well, in base-R anyway). These are most of the tools you need to make
most of the figures you might need to make, and enough base to learn how to
make others.

15.5. SUMMARY 223

15.5 Summary

In this chapter we’ve looked at several scatterplots and at how lines, points,
and secondary axes can be added to plots. In addition we’ve explored creating
multi-panel plots. These are pretty basic tools which can be applied to a wide
range of graphics.

15.6 Exercises

1) We’ll revisit the electric bill data once more. In the Chapter 13 exercises we fit
an ANCOVA to this data. Plot this ANCOVA (not the residuals), showing the
two curves and two parts of the data with distinct symbols, and with properly
formatted axes and labels (i.e., Kilowatt hours per day should be shown as
“KWHd-1”.)

2) Using the electric bill data, plot daily energy use (kWhd.1) as a function of
average temperature (avgT). Add a second y axis to show cost. Include a legend
(to clarify, this means average temperature is on the x-axis.)

224 CHAPTER 15. VISUALIZING DATA I

Chapter 16

Visualizing Data II

Errorbars and polygons

16.1 Introduction

In the last chapter we built some rather complex multiple-panel scatter plots.
Here we’ll consider some additional ways that scatter plots (x,y plots) can be
enhanced, principally by adding error bars and polygons or ribbons.

16.2 Scatter Plot with Error Bars

This figure will illustrate an ANCOVA between the biomass of a rye crop and
the the date at which it was cut (covariate) for two different rye planting dates
(factor variable). In this figure we’ll show the variability of biomass at each
cutting date using error bars, and show the ANCOVA line for each of the two
levels of planting date in two years. First we’ll introduce the function arrows()
which we’ll use to make error bars.

op <- par(mar = c(4, 4, 0.5, 0.5))
plot(1:10, 1:10, type = "n")
arrows(x0 = 1, y0 = 6, x1 = 1, y1 = 4)
arrows(1.5, 8, 1.5, 2, code = 3)
arrows(2, 6, 2, 4, code = 3, angle = 90)
arrows(2.5, 6.5, 2.5, 4.5, code = 3, angle = 90, length = 0.1)
x <- c(3, 5, 7)
y <- c(5, 4.5, 6)

225

226 CHAPTER 16. VISUALIZING DATA II

z <- c(2, 1, 1.5)
arrows(x, y - z, x, y + z, code = 3, angle = 90, length = 0.1)

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

Things to notice: 1. arrows() takes four points, x0=,y0=,x1=,y1= that define
the ends of the arrows.
2. code=3 puts arrows at both ends of the arrow
3. angle=90 makes the arrow look like an error bar
4. length controls the length of the arrowhead or crossbar
5. arrows() is happy to take a vector as an argument, allowing one call to
arrows() to create multiple error bars.

To make the plot we first need to load the data and examine it. We’ll use a
dataset for the plot that includes the means and standard errors, and we’ll an
anova table to the plot that shows an ANCOVA fit on the full data.

RyeMeans <- read.delim("../Data/Rye ANCOVA.txt", comment = "#",
, stringsAsFactors = TRUE)

head(RyeMeans) # examine the data
RyeMeans$Term.DOY # not in order

[1] 117 137 128 149 137 155 117 137 128 149 137 155 118
[14] 142 128 152 140 160 118 142 128 152 140 160

16.2. SCATTER PLOT WITH ERROR BARS 227

RyeMeans <- RyeMeans[order(RyeMeans$Term.DOY),] # sort the data
by Term.DOY↪→

PLOT
range(RyeMeans$MeanDM + RyeMeans$DMse) # ~110 to ~1100)

[1] 111.885 1115.230

range(RyeMeans$Term.DOY) # find x range (~115-160)

[1] 117 160

levels(RyeMeans$YrPd)

[1] "2008 P1" "2008 P2" "2009 P1" "2009 P2"

Things to notice: 1. We sorted the data frame using RyeMeans<-RyeMeans[order(RyeMeans$Term.DOY),].
This is just standard R indexing: before the comma we specify the rows; here we
just say the rows given by the function order() applied to RyeMeans$Term.DOY.
2. The variable YrPd lists the year and the planting date together as a single
factor. This is a convenience for plotting. The original ANCOVA was fit
with the year and rye planting date as separate factors, and included their
interaction, (which was not significant).

Now we’ll plot the data. As before, if you run this code you may want to set
your figure size to width=6.75,height=5.25.

quartz(height = 5.25, width = 6.75)
only run in console, not evaluated on compile pdf(file
= 'RyeAncova.pdf', height=5.25,width=6.75)
par(mar = c(5, 5, 3, 1)) # set margin settings.
with(subset(RyeMeans, YrPd == "2008 P1"), plot(Term.DOY, MeanDM,

ylim = c(100, 1100), xlim = range(RyeMeans$Term.DOY),
ylab = expression(paste("Rye biomass (g ", mˆ{

-2
}, ")")), xlab = "Date", type = "n", xaxt = "n")) # subset
not necessary here↪→

for dates on X axis, use this, and add xaxt='n' to
above call to plot()
axis(side = 1, at = seq(120, 160, by = 10), labels = c("May 1",

"May 11", "May 21", "May 31", "June 10"))
add error bars for termination date (Term.DOY) in
each treatment group (YrPd).

228 CHAPTER 16. VISUALIZING DATA II

for (i in 1:4) {
with(subset(RyeMeans, as.numeric(YrPd) == i),

arrows(Term.DOY,↪→

MeanDM + DMse, Term.DOY, MeanDM - DMse, length = 0.05,
angle = 90, code = 3, lwd = c(1, 2, 1, 2)[i], col =

c("black",↪→

"black", "grey57", "grey57")[i]))
} # using this loops avoids 4 identical calls to arrows()
legend("bottomright", inset = 0.015, legend = c("Sept. 2008",

"Oct. 2008", "Sept. 2009", "Oct. 2009"), lwd = c(1, 2,
1, 2), col = c("black", "black", "grey57", "grey57"),
lty = c(1, 1, 2, 2), title = "Rye planting date")

ADD lines
endpoints <- data.frame(YrPd = rep(c("2008 P1", "2008 P2",

"2009 P1", "2009 P2"), each = 2), Term.DOY = c(117, 155,
117, 155, 118, 160, 118, 160))

create df of x value endpoints for lines
endpoints <- cbind(endpoints, RyeDM = predict(lm(MeanDM ~

Term.DOY + YrPd, data = RyeMeans), newdata = endpoints))
create df of x and y value for line endpoints
endpoints <- cbind(endpoints[c(1, 3, 5, 7),], endpoints[c(2,

4, 6, 8), -1])
reorganize this so each row is coordinates for one
line
segments(x0 = endpoints[, 2], y0 = endpoints[, 3], x1 =

endpoints[,↪→

4], y1 = endpoints[, 5], col = c("black", "black", "grey57",
"grey57"), lwd = c(1, 2, 1, 2), lty = c(1, 1, 2, 2))

draw the lines ADD ANOVA table
legend(121, 1137, legend = c("Effect", "Slope(Date)", "Cereal rye

planting date",↪→

"Year", expression(Rˆ2)), bty = "n", adj = 0.5, cex = 0.9)
adj=0.5:centered text
legend(130.5, 1137, legend = c("p-value", "0.0001", "0.0138",

"0.0001", "0.84"), bty = "n", adj = 0.5, cex = 0.9)
rect(116, 835, 135.5, 1110)
lines(x = c(116.5, 135), y = c(1060, 1060), lwd = 2)

16.2. SCATTER PLOT WITH ERROR BARS 229

20
0

40
0

60
0

80
0

10
00

Date

R
ye

 b
io

m
as

s
(g

 m
−2

)

May 1 May 11 May 21 May 31 June 10

Rye planting date

Sept. 2008
Oct. 2008
Sept. 2009
Oct. 2009

Effect
Slope(Date)

Cereal rye planting date
Year
R2

p−value
0.0001
0.0138
0.0001

0.84

dev.off()

There is an informative plot that shows the variability in the y-axis for each
group at each point in the x-axis. While you never may need to make a plot
like this, some elements of this are likely to be useful - for example a regression
line that doesn’t extend beyond the x-axis range of the data would be generally
useful.

Things to notice: 1. the use of type="n" to create a blank plot - even though
nothing has been plotted, the coordinate space has been created, so points(),
lines(), and arrows() can be used.
2. The use of a for() loop to draw the errorbars avoids 4 nearly identical
calls to arrows(). 3. To draw the lines of the ANCOVA model so that they
don’t extend beyond the data, we can’t use abline() (in any case, it would
not gracefully deal with a complex model like this). We need to use predict()
with our model, which means we need a data.frame of that includes the terms
of the model. It is worth viewing the object endpoints when it is created and
each of the times it is modified.
4. The modified form of endpoints simplifies using segments() to draw 4 lines
at once. 5. "grey57" means a grey that is 57% white, so "grey90" is a light
grey and "grey10" a dark grey.
6. Adding the ANCOVA table to the plot with legend() required a bit of trial

230 CHAPTER 16. VISUALIZING DATA II

en error to get the spacing right. The function addtable2plot() in the package
“plotrix” might make this easier.1
7. There are two lines commented out with ###: pdf(...) and dev.off().
If they were run they would open a pdf graphic device (pdf()) of specified size
and close that device (dev.off()), and all code between them would be sent
to that device. Rather than create a plot you can view while making it, they
would create a .pdf file. RStudio has nice tools for exporting plots, but is is
good to know how to write directly to pdf, in case you need to script making
multiple plots (or you are not using RStudio)

16.3 Scatter Plots with Confidence Ribbons

One of the wonderful things about R graphics is how anything is possible. Here
we’ll make a scatter plot of some data and visualize the confidence interval for
around that data with a ribbon, which we’ll make using polygon() for drawing
arbitrary polygons. This example is a plot showing the effect of limestone gravel
on the pH of acidic forest soils in PA. Soil was sampled at varying distances
(dist) from the road2 on several forest roads in PA, which were surfaced either
with shale or limestone gravel.

pHmeans <- read.table("../Data/ph data.txt", header = TRUE,
sep = "\t", stringsAsFactors = TRUE)

pHmeans <- pHmeans[pHmeans$side == "down", -3] # simplify the
data↪→

head(pHmeans)

The data table here includes mean, standard deviation, standard error, and the
95% confidence interval for the mean. First we’ll make a basic version of the
plot. As above you’ll want to set height of the graphics device to 5 inches and
the width to 4.

xl <- range(pHmeans$dist) # x limits
par(mar = c(4.1, 4.1, 1, 1)) # set par()
with(subset(pHmeans, trt == "L"), plot(dist, mean, xlab =

"Distance (m)",↪→

ylab = "", type = "l", ylim = range(pHmeans$mean), frame =
FALSE,↪→

las = 1)) # plot
with(subset(pHmeans, trt == "S"), lines(dist, mean, lty = 2))

1Though using legend() is an improvement over just using text(), which is how I did it
at first.

2The measurements were made on both sides of the road (up and down hill), but here we’ll
use just one.

16.3. SCATTER PLOTS WITH CONFIDENCE RIBBONS 231

0 10 20 30 40

4

5

6

7

8

Distance (m)

Some things to notice: 1. The argument las= forces axis tick labels to be
horizontal. 2. the frame=FALSE argument suppresses the “box” around the
plot.

In order to show the variability around the mean we’ll use the function
polygon(), which creates arbitrary polygons bounded by a series of points of
given x= and y= coordinates, as shown here.

plot(1:40, (1:40)/5, type = "n")
polygon(x = c(20, 25, 30, 30, 20), y = c(5, 6, 6.2, 4, 5))
x <- c(5, 10, 15, 20)
y <- c(4, 4.5, 4.2, 5)
polygon(x = c(x, rev(x)), y = c(y, rev(y + 1.5)), col = "grey")

232 CHAPTER 16. VISUALIZING DATA II

0 10 20 30 40

0
2

4
6

8

1:40

(1
:4

0)
/5

The second call to polygon() shows how we can create a “ribbon” using c() and
rev() (which reverses its argument). We’ll use the same approach to calculate
the ribbons for the limestone and shale roads on the up-slope and down-slope
sides of the road. We’ll start by calculating the y- and x- values for the polygons.

L <- with(subset(pHmeans, trt == "L"), c(mean + sterr * qt(p =
0.975,↪→

df = count - 1), rev(mean - sterr * qt(p = 0.975, df = count
-↪→

1))))
pH for limestone
S <- with(subset(pHmeans, trt == "S"), c(mean + sterr * qt(p =

0.975,↪→

df = count - 1), rev(mean - sterr * qt(p = 0.975, df = count
-↪→

1))))
pH for shale
dds <- with(subset(pHmeans, trt == "S"), c(dist, rev(dist)))
distances for limestone
ddl <- with(subset(pHmeans, trt == "L"), c(dist, rev(dist)))
distances for shale

Notice that we’re using subset() to select the relevant part of the data, and
then using c() and rev() to put together the top and the bottom y values
(lines 2-5) and to create the x values (last 2 lines). In my head “L” stands for
limestone and “S” for shale, and “dds” for distances for shale. The call to qt()

16.3. SCATTER PLOTS WITH CONFIDENCE RIBBONS 233

here is returning the appropriate t-value for a 95% confidence interval given the
degrees of freedom.

lime = rgb(t(col2rgb("grey44")), alpha = 128, max = 255)
lime='#70707080'
shal = rgb(t(col2rgb("darkolivegreen2")), alpha = 128, max = 255)
'#BCEE6880'
xl <- range(pHmeans$dist)
op <- par(mar = c(4.1, 4.1, 1, 1))

with(subset(pHmeans, trt == "L"), plot(dist, mean, xlab = "",
ylab = "", type = "n", ylim = c(3.5, 8.25), xlim = xl,
las = 1, frame = FALSE))

polygon(ddl, L, col = lime, border = NA)
polygon(dds, S, col = shal, border = NA)
with(subset(pHmeans, trt == "L"), lines(dist, mean, xlab = "",

lty = 1, lwd = 2))
with(subset(pHmeans, trt == "S"), lines(dist, mean, xlab = "",

lty = 1, lwd = 2))
legend("topright", inset = 0.1, fill = c(rgb(r = 0.5, g = 0.5,

b = 0.5, alpha = 0.5), rgb(r = 0.73, g = 0.93, b = 0.41,
alpha = 0.7)), legend = c("Limestone", "Shale"), cex = 1.2)

mtext(text = "Soil pH", side = 2, cex = 1.2, line = 2.2)
mtext(text = "Distance from road (m)", side = 1, line = 2,

cex = 1.2)

0 10 20 30 40

4

5

6

7

8

Limestone
Shale

S
oi

l p
H

Distance from road (m)

Things to notice here: 1. We want semi-transparent colors in case our ribbons

234 CHAPTER 16. VISUALIZING DATA II

overlap. We use col2rgb() to get the rgb colors that correspond to the R colors,
and rgb() to specify colors with transparency (alpha<255, with max=255).
2. Since col2rgb returns rows and rgb() requires columns, t() transposes the
rows of col2rgb() to columns.
3. col2rgb returns values from 0-255, so we tell rgb() that max=255 - the
default for rgb() is a 0-1 scale.
4. We created the polygons first and plotted the lines on top.

The package ggplot2 has tools for automatically adding ribbons, but now you
know how to manipulate arbitrary polygons.

16.4 Error Bars in 2 Dimensions

Sometimes we might want to show errorbars in two dimensions. This is not
particularly difficult, it just uses more of what we learned last chapter. We’ll
demonstrate with the mtcars data, and look at horsepower (hp) and displace-
ment (disp) for cars with differing number of cylinders (cyl).

data(mtcars)
cols = c("black", "red", "blue")
with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))

100 200 300 400

50
15

0
30

0

disp

hp

As a quick check we can plot the data and see we have three clusters. How
different are they - are their means “significantly different”? First we’ll calculate
means and standard errors for each group (see Chapter 9).

16.4. ERROR BARS IN 2 DIMENSIONS 235

car.means <- with(mtcars, aggregate(cbind(disp, hp), by =
list(cyl = cyl),↪→

mean))
car.means[, 4:5] <- with(mtcars, aggregate(cbind(disp, hp),

by = list(cyl), function(x) qt(0.025, df = length(x),
lower.tail = FALSE) * sd(x)/sqrt(length(x))))[2:3]

names(car.means)[4:5] <- c("disp.CI", "hp.CI")

Note that here we’ve actually (correctly) queried the t-distribution for calculat-
ing our 95% CI, rather than just using a value of 1.96 from the Z distribution.
Now we can plot this data and add errorbars. For interest, let’s plot it on top
of our previous plot.

with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))
with(car.means, points(disp, hp, pch = 24, bg = cols[cyl/2 -

1]))
with(car.means, arrows(disp, hp - hp.CI, disp, hp + hp.CI,

code = 3, length = 0.1, angle = 90, col = cols[cyl/2 -
1]))

y-axis error bars
with(car.means, arrows(disp - disp.CI, hp, disp + disp.CI,

hp, code = 3, length = 0.1, angle = 90, col = cols[cyl/2 -
1]))

100 200 300 400

50
15

0
30

0

disp

hp

236 CHAPTER 16. VISUALIZING DATA II

x-axis error bars

An alternate way to show the errorbars in 2 dimensions is using an ellipse. The
package plotrix has a function for plotting ellipses that we can use. You’ll
need to run install.packages("plotrix") if you haven’t already done so.

library(plotrix)
with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))
with(car.means, points(disp, hp, pch = 24, bg = cols[cyl/2 -

1]))
with(car.means, draw.ellipse(x = disp, y = hp, a = disp.CI,

b = hp.CI, border = cols, lwd = 1))

100 200 300 400

50
15

0
30

0

disp

hp

There are other ways to do draw an ellipse, such as directly coding an ellipse.

It is important to recall that the ellipses or error bars in these last figures are for
the means. We don’t expect that new samples drawn from these populations will
fall within these bounds - in fact, few of our individual samples fall within them.
(See discussion of confidence vs prediction intervals in @ref(#predictions))

16.5 Reversing Axes

On occasion it make sense to reverse an axis for some reason - maybe to
plot something that varies with depth (dissolved oxygen in ocean water [for

https://stat.ethz.ch/pipermail/r-help/2006-October/114652.html

16.5. REVERSING AXES 237

example] (http://www.oceannetworks.ca/sites/default/files/images/pages/
data/Saanich_oxygen_profile.gif)). We’ll produce a (crude) facsimile of this
figure to demonstrate how to approach this. We’ll begin by making up some
data.

depth <- seq(0, 200, 20)
DO <- c(5, 2.5, 2, 1.5, 0.5, 0.4, 0.3, 0.1, 0.1, 0.1, 0.5)
plot(DO, depth, type = "l")
plot(DO, -depth, type = "l")

0 2 4

0
10

0
20

0

DO

de
pt

h

0 2 4

−
20

0
−

10
0

0

DO

−
de

pt
h

A simple call to plot is fine for basic visualization, but it is “upside down”, rather
than what we really want to see. Even plotting the negative of depth only gets
us partway to our goal - the axis labels on the y axis should be positive, and
the x-axis should be on top.

par(mar = c(1, 5, 4, 1), tck = 0.02) # set margins
plot(DO, depth, type = "l", xaxt = "n", xlab = "", ylab = "Depth

(m)",↪→

ylim = c(200, 0), las = 1)
axis(side = 3)
mtext(side = 3, line = 2.5, "Dissolved Oxygen (mg/l)")

http://www.oceannetworks.ca/sites/default/files/images/pages/data/Saanich_oxygen_profile.gif
http://www.oceannetworks.ca/sites/default/files/images/pages/data/Saanich_oxygen_profile.gif

238 CHAPTER 16. VISUALIZING DATA II

200

150

100

50

0
D

ep
th

 (
m

)

0 1 2 3 4 5

Dissolved Oxygen (mg/l)

Note that here we also reversed the default outside placement of tick marks
using the argument tck=0.02 - this is just to demonstrate that you can change
pretty much anything in your plots. The value 0.02 is fraction of the plot width.
We also placed the tick mark labels horizontally using the argument las=1.Also
note that mtext() can take vectors as inputs (hardly surprising since this is
R). One would use the same approach we used here for reversing the y-axis to
reverse the x-axis.

16.6 Summary

In this chapter we’ve looked at several scatterplots and at how lines, error
bars, and polygons can be added to plots. We’ve also learned how to create
semitransparent colors. These are pretty basic tools which can be applied to a
wide range of graphics. In the next chapter we’ll continue with visualizing data.
We’ve also looked at how we can create multi-panel figures.

16.7 Fun with R graphics

I created this at one point to see what kind of “art” (or perhaps I should say
“aRt”?) I could generate in R with random rectangles and random (semitrans-
parent) fill. It mostly uses things we’ve looked at in this lesson. Here I’ve
defined it as a function because that makes it easier to run it repeatedly until
I like the output. We’ll look more at writing functions later. (I make no claim
that this is useful, or even art, but it amused me and I learned some things).

16.7. FUN WITH R GRAPHICS 239

random.color.boxes = function(n = 10) {
cols <- colors()[c(1, 26, 552, 652, 454)]
cols <- col2rgb(cols) # to find out the rgb code for a color
als <- c(rep(0, 5), rep(10, 5), seq(0, 220, 20))
rgb(red,green,blue,alpha,max) # to specify color

par(mar = c(1, 1, 1, 1))
plot(0:10, 0:10, type = "n", xaxt = "n", yaxt = "n", xlab =

"",↪→

ylab = "")
cs <- sample(1:5, n, rep = T)
as <- sample(als, n, rep = T)
a <- runif(n) * 10
b <- runif(n) * 10
c <- runif(n) * 10
d <- runif(n) * 10
rect(a, b, c, d, border = "black", col = rgb(cols[1, cs],

cols[2, cs], cols[3, cs], as, max = 255))
rect(a, b, c, d, border = "black") # replot borders

}
random.color.boxes()

240 CHAPTER 16. VISUALIZING DATA II

16.8 Exercises

1) In Chapter 12 we fit a simpler model (only the average temperature and the
quadratic term, no factor for insulation). Use polygon() to plot the confidence
interval for this model and then plot the points over it. Hint Use predict() to
generate the confidence interval.

2) The “ufc” data we examined in last chapter’s exercises can be loaded from
ufc.csv (in the “data” directory of EssentialR). This contains data on forest
trees, including Species, diameter (in cm, measured 4.5 feet above ground and
known as “diameter at breast height” or Dbh), and height (in decimeters).
Make a scatterplot showing average Height as a function of average Dbh for
each species. Include x and y errorbars on the plot showing the standard errors.

Chapter 17

Visualizing Data III

Boxplots and barplots

17.1 Introduction

In the chapters we’ve covered basic scatter plotting, and then looked at how we
can use several graphical functions to control spacing of margins around plots,
multiple panels in a figure, and the addition of error bars, and polygons on the
plot and in the margins. Here we’ll build on what we learned last time and
apply it to boxplots and barplots.

17.2 Boxplots

Boxplots are very useful tools for visualizing and comparing distributions. We’ll
use boxplots to explore some data on the growth of beans in nine different treat-
ments (combinations of soil fertility, pot size, and presence/absence of competi-
tors) 1

beans <- read.csv("../Data/BeansData.csv", header = TRUE,
comm = "#", stringsAsFactors = TRUE)

get data
names(beans)

[1] "pot.size" "phos" "P.lev" "rep"
[5] "trt" "rt.len" "ShtDM" "RtDM"

1You can find more than you want to know about this data here.

241

http://www.publish.csiro.au/view/journals/dsp_journal_fulltext.cfm?nid=102&f=FP11130

242 CHAPTER 17. VISUALIZING DATA III

par(mar = c(3.5, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans) # make plot

a b c d e f

0.
5

1.
0

1.
5

2.
0

2.
5

factor(trt)

S
ht

D
M

Note that we are coercing the variable trt to a factor here. If we don’t do this,
plot() does not know how to handle it, because it is a character variable.

This is a pretty basic plot. Let’s fix it up with treatment labels and a legend:

par(mar = c(4.1, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",

"grey60"),↪→

ylab = "Shoot biomass (g)", xlab = "", xaxt = "n")
abline(v = c(2.5, 4.5), lty = 2)
axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),

tick = FALSE, cex.axis = 1.3)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =

c("white",↪→

"grey60"), bg = "white")
mtext("Pot volume", side = 1, line = 2.5, cex = 1.2)

17.2. BOXPLOTS 243

0.
5

1.
0

1.
5

2.
0

2.
5

S
ho

ot
 b

io
m

as
s

(g
)

4 8 12

LP
HP

Pot volume

Most of the ‘tricks’ we used here were introduced in the last chapter. Things
to notice here: 1. The vector of colors for filling the boxes is only 3 elements
long - it is recycled over the 9 boxes. 2. abline() can be used to draw vertical
(v=...) or horizontal lines - useful for gridlines or separating lines. 3. Using
axis() with tick=FALSE allows us to put labels on the x axis wherever we want.

Here is an alternate (basic) form of the graph where we use the at= argument in
boxplot() to group the boxes. The other elements (axis labels, legend) haven’t
been included here, but can be added, though the spacing of added elements
may need to be adjusted.

par(mar = c(3.5, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",

"grey60"),↪→

ylab = "Shoot biomass (g)", xlab = "", xaxt = "n", at =
c(1.15,↪→

2, 4.15, 5, 7.15, 8))

244 CHAPTER 17. VISUALIZING DATA III

0.
5

1.
0

1.
5

2.
0

2.
5

S
ho

ot
 b

io
m

as
s

(g
)

17.2.1 Adding means to boxplots

Barplots (see below) are often used instead of boxplots, but barplots generally
only show mean and variation. There are a number of very good reasons to
prefer boxplots with added means over barplots. Here we’ll demonstrate how
to construct such a plot.

The first step is to extract means and standard errors from the data set. This
should ring a bell - we used apply() functions and aggregate() for this in
Chapter 9. Here is an example of defining a function “on the fly” to calculate
the SE by treatment. It calculates the number of values by counting the number
of values that are not NA (sum(is.na(x)==FALSE)). In a perfect world, we don’t
have to worry about missing data, but real data is rarely that nice.

beans2 <- with(beans, aggregate(cbind(rt.len, ShtDM, RtDM),
by = list(phos = phos, pot.size = pot.size), FUN = mean,
na.rm = TRUE)) # get means

beans2 <- cbind(beans2, with(beans, aggregate(cbind(rt.len,
ShtDM, RtDM), by = list(phos = phos, pot.size = pot.size),
function(x) (sd(x, na.rm = TRUE)/(sum(is.na(x) ==

FALSE)ˆ0.5))))[,↪→

3:5]) # add sd
names(beans2)[6:8] <- c("rt.lense", "ShtDMse", "RtDMse")
beans2$type <- letters[1:6] # create the trt type variable
beans2 # check

Now that we have the means and standard errors for the groups we can add
them to the boxplot we just made.

http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2813.html

17.2. BOXPLOTS 245

par(mar = c(4.1, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",

"grey60"),↪→

ylab = "Shoot biomass (g)", xlab = "", xaxt = "n")
arrows(1:6, beans2$ShtDM - beans2$ShtDMse, 1:6, beans2$ShtDM +

beans2$ShtDMse, code = 3, angle = 90, length = 0.1, lwd = 2)
points(1:6, beans2$ShtDM, pch = 23, cex = 1.5, lwd = 2, bg =

c("white",↪→

"grey60"))
abline(v = c(2.5, 4.5), lty = 2)
axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),

tick = FALSE, cex.axis = 1.3)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =

c("white",↪→

"grey60"), bg = "white", ncol = 2)
mtext("Pot volume", side = 1, line = 2.5, cex = 1.2)

0.
5

1.
0

1.
5

2.
0

2.
5

S
ho

ot
 b

io
m

as
s

(g
)

4 8 12

LP HP

Pot volume

This is a graphic that clearly shows the distribution of the variables. The choice
of how to indicate the means and standard errors has some room for variation.
Here we’ve used a solid fill so the median line is obscured where overplotted by
the mean - this is one way to ensure that it is clearly visible even if the mean
happens to coincide with the median.

17.2.2 A Multi-panel Boxplot

Let’s adapt this code to make a multi-panel boxplot. As we discussed
in the last session, you may want to force a plotting window of specific
size using: quartz(title= "Density Dependence", height=6,width=4)

246 CHAPTER 17. VISUALIZING DATA III

or x11(title="Density Dependence",height=6,width=4) to create the
appropriately sized plotting window.

quartz(width = 5, height = 7)
layout(matrix(c(1, 2, 3), nrow = 3), heights = c(1, 1, 1.3))
layout.show(3) # to check the layout
par(mar = c(0, 5, 1, 1), cex.axis = 1.3, cex.lab = 1.3)
shoot biomass
with(beans, plot(trt, ShtDM, col = c("white", "grey60"), ylab =

"Shoot biomass (g)",↪→

xlab = "", xaxt = "n", cex = 1.3))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "A", cex = 2, bty =

"n")↪→

legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",↪→

"grey60"), bg = "white", ncol = 2)
par(mar = c(0, 5, 0, 1))
root biomass
with(beans, plot(trt, RtDM, col = c("white", "grey60"), ylab =

"Root biomass (g)",↪→

xlab = "", xaxt = "n", cex = 1.2, ylim = c(0, 1.9)))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "B", cex = 2, bty =

"n")↪→

par(mar = c(5, 5, 0, 1))
root length
with(beans, plot(trt, rt.len, col = c("white", "grey60"),

ylab = "Root length (m)", xlab = "", xaxt = "n", cex = 1.2))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "C", cex = 2, bty =

"n")↪→

axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),
tick = FALSE, cex.axis = 1.3)

mtext("Pot volume (L)", side = 1, line = 2.65)

17.2. BOXPLOTS 247

0.
5

1.
0

1.
5

2.
0

2.
5

S
ho

ot
 b

io
m

as
s

(g
) A LP HP

0.
0

0.
5

1.
0

1.
5

R
oo

t b
io

m
as

s
(g

)

B

20
0

30
0

40
0

50
0

R
oo

t l
en

gt
h

(m
)

C

4 8 12

Pot volume (L)

Notice the use of legend() instead of text() to place the panel labels (A-C).
Since a location like "topleft" can be specified and the inset= specified (in
fraction of the plot) this is an easier way to get these labels in the same location
on all panels.

248 CHAPTER 17. VISUALIZING DATA III

17.3 Barplots

Now we’re ready to make barplots (though as noted above, you should probably
ask yourself if a boxplot would be a better choice). We’ve used barplot() in
a few examples previously, but we’ll dig in more here. NOTE: barplot() does
not accept data in a formula (y~x) like plot() or boxplot(). It also requires
that the argument height=, which specifies the height of the bars, be a vector
or a matrix. We’ll use arrows() to make error bars as we did previously. We
already calculated the means and standard errors for this data for overplotting
means on boxplots.

with(beans2, barplot(ShtDM, ylim = c(0, max(ShtDM + ShtDMse))))
with(beans2, arrows(0.5:5.5, ShtDM + ShtDMse, 0.5:5.5, ShtDM -

ShtDMse, length = 0.05, angle = 90, code = 3))

The basic barplot (below left) is OK, but the error bars ended up in strange
locations. In the previous example with boxplot() the boxes were centered on
the integer values on the x-axis - we used this in placing our separating lines
and x-axis labels. Here something else is going on.

A closer reading of ?barplot yields this useful information: in addition to
making a barplot, barplot() also invisibly returns the midpoints of the
bars. All we need to do is assign this output from barplot and we can use it
(below right).

mp <- with(beans2, barplot(ShtDM, width = 0.8, ylim = c(0,
max(ShtDM + ShtDMse))))

mp # retreive the bar midpoints

[,1]
[1,] 0.56
[2,] 1.52
[3,] 2.48
[4,] 3.44
[5,] 4.40
[6,] 5.36

17.3. BARPLOTS 249

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

2.
0

A look at the bar midpoints confirms that they are not centered on integer
values. Can bar position be specified? Of course! A careful reading of ?barplot
is instructive: the argument that controls bar width is width= and it’s default
value is 1. The spacing is controlled by space=, which defaults to 0.2 (where
bars are not grouped); space= is specified in fractions of width=. Both space=
and width= can be specified as vectors for the ability to control bar placement.

17.3.1 Creating a Polished Barplot

Putting all of this together we can make a high-quality barplot.

par(mar = c(4.1, 4.1, 0.6, 0.6))
mp <- with(beans2, barplot(ShtDM, col = c("white", "grey60"),

width = 0.8, ylim = c(0, max(ShtDM + ShtDMse) * 1.1),
ylab = "Shoot biomass (g)", xlab = "", xaxt = "n"))

make the plot
box(which = "plot") # put a box around it
with(beans2, arrows(mp, ShtDM + ShtDMse, mp, ShtDM - ShtDMse,

length = 0.05, angle = 90, code = 3))
add error bars
abline(v = c(mean(mp[2:3]), mean(mp[4:5])), lty = 2)
add dashed separator lines
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =

c("white",↪→

"grey60"), bg = "white", cex = 0.9) # legend
axis(side = 1, at = mp[c(1.5, 3.5, 5.5)], labels = c(4, 8,

12), tick = FALSE, cex.axis = 1.3)
#

axis(side=1,at=c(1,3,5),labels=c(4,8,12),tick=FALSE,cex.axis=1.3)↪→

mtext("Pot volume (L)", side = 1, line = 2.65)

250 CHAPTER 17. VISUALIZING DATA III

S
ho

ot
 b

io
m

as
s

(g
)

0.
0

1.
0

2.
0 LP

HP

4 8 12

Pot volume (L)

Notice that we didn’t have to hard-code legend or label locations: legend()
can take "topright" as a location and we can specify inset= also. The x-axis
labels and vertical separators are based on the vector of bar midpoints also.
This is generally the best approach: 1) if you change the size of the plotting
window or the character size in the legend, things will still end up in the right
location 2) since it makes your code more general, it is easier to adapt for the
next plot you have to make.

17.3.2 Creating a Multi-panel Barplot

Now we’ll put it all together for multiple panels, and include significance letters
such as might be given by a Tukey test (not shown here). (As above, height
and width want to be forced to 6” and 4”).

quartz(width = 5, height = 7)
layout(matrix(c(1, 2, 3), nrow = 3), heights = c(1, 1, 1.3))
make layout
par(mar = c(0, 5.5, 1, 1), cex.axis = 1.3, cex.lab = 1.3,

las = 1)
par settings plot 1
mp <- with(beans2, barplot(ShtDM, col = c("white", "grey60"),

xlab = "", xaxt = "n", ylim = c(0, max(ShtDM + ShtDMse) *
1.14), ylab = "Shoot biomass (g)"))

box(which = "plot")
with(beans2, arrows(mp, ShtDM + ShtDMse, mp, ShtDM - ShtDMse,

length = 0.05, angle = 90, code = 3)) # err bars
divs <- c(mean(mp[2:3]), mean(mp[4:5])) # calculate divider

locations↪→

abline(v = divs, lty = 2)
text(mp, (beans2$ShtDM + beans2$ShtDMse), c("a", "b", "a",

17.3. BARPLOTS 251

"b", "a", "b"), pos = 3, cex = 1.15) # add letters
legend("topleft", inset = c(-0.05, -0.05), "A", cex = 2, bty =

"n")↪→

plot 2
par(mar = c(0, 5.5, 0, 1))
with(beans2, barplot(RtDM, col = c("white", "grey60"), xlab = "",

xaxt = "n", ylim = c(0, max(RtDM + RtDMse) * 1.14), ylab =
"Root biomass (g)"))↪→

box(which = "plot")
with(beans2, arrows(mp, RtDM + RtDMse, mp, RtDM - RtDMse,

length = 0.05, angle = 90, code = 3)) # err bars
abline(v = divs, lty = 2)
text(mp, (beans2$RtDM + beans2$RtDMse), c("ab", "b", "a",

"b", "ab", "b"), pos = 3, cex = 1.15) # add letters
legend("topleft", inset = c(-0.05, -0.05), "B", cex = 2, bty =

"n")↪→

plot 3
par(mar = c(5, 5.5, 0, 1))
with(beans2, barplot(rt.len, col = c("white", "grey60"), xlab =

"",↪→

xaxt = "n", ylim = c(0, max(rt.len + rt.lense) * 1.4),
ylab = "Root length (m)")) # plot 3

box(which = "plot")
with(beans2, arrows(mp, rt.len + rt.lense, mp, rt.len - rt.lense,

length = 0.05, angle = 90, code = 3)) # err bars
abline(v = divs, lty = 2)
text(mp, (beans2$rt.len + beans2$rt.lense), c("b", "c", "a",

"c", "ab", "b"), pos = 3, cex = 1.15) # add letters

legend("topleft", inset = c(-0.05, -0.05), "C", cex = 2, bty =
"n")↪→

axis(side = 1, at = mp[c(1.5, 3.5, 5.5)], labels = c(4, 8,
12), tick = FALSE, cex.axis = 1.3)

mtext("Pot volume (L)", side = 1, line = 2.65)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =

c("white",↪→

"grey60"), bg = "white", cex = 0.9)

252 CHAPTER 17. VISUALIZING DATA III

S
ho

ot
 b

io
m

as
s

(g
)

0.0

0.5

1.0

1.5

2.0

2.5

a

b

a

b

a

b

A

R
oo

t b
io

m
as

s
(g

)

0.0

0.5

1.0

1.5

ab

b

a

b

ab

b
B

R
oo

t l
en

gt
h

(m
)

0
100
200
300
400
500
600

b

c

a

c

ab
b

C

4 8 12

Pot volume (L)

LP
HP

Notice that locations of the added elements mostly are not hard-coded. They
y= location for the panel labels is calculated the same way as the upper ylim=
value.

17.4 Summary

The last three chapters have introduced most of the tools required for presenting
data in graphical form. One of the great challenges is figuring out what the
clearest and most informative way to present a given set of data is. As noted
above, barplots are commonly used when they probably should not be used.
When thinking about presenting data, it may be useful to review the work of
Cleveland and McGill, as this helps us think about how to clearly present data.

http://www.jstor.org/stable/2288400

17.5. EXERCISES 253

17.5 Exercises

1) The “ufc” data we examined in last chapter’s exercises can be loaded from
ufc.csv (in the “data” directory of EssentialR). This contains data on forest
trees, including Species, diameter (in cm, measured 4.5 feet above ground and
known as “diameter at breast height” or Dbh), and height (in decimeters). Make
a single barplot showing both variables (Dbh and Height) for each Species and
include errorbars (either SE of the mean or 95% CI) and a legend. Hint: In Ch
15 we saw how to add a secondary y-axis - with a barplot you need to specify
the x-axis limits and change the width= and space= arguments to make the
bars narrower and to get the bars to plot side-by-side.

2) Using the ufc data create a single plot shows a boxplot, with mean and
standard error for both variables for the 5 most common (greatest frequency)
species (a total of 10 boxplots). Hints: create a new dataframe with only the
5 most common species - and be sure to check the levels for Species in the
new dataframe - you may need to use droplevels() to get rid of unused levels.
Recall you can use %in% for logical test of group membership. For putting
multiple variables on a single box-plot, have a look at ?boxplot - particularly
at= and add=.

254 CHAPTER 17. VISUALIZING DATA III

Chapter 18

Mixed Effects Models

More advanced documentation and managing
projects

18.1 Introduction

I will begin by saying that this should be considered a minimal introduction
to mixed effects models, and the goal here is point you toward a few functions
and packages likely to be useful. There are many, many possible applications
of mixed models, and I am not an expert. Having said that, I will share what I
have learned.

The regression assumptions we examined so far (Chapters 6 and 11) deal with
normality of the residuals and constant variance in the residuals. There is
another assumption - namely that the residuals are independant1.

In many cases this assumption causes difficulties in analysis. For example in a
drug metabolism trial a group of subjects may be given a fixed dose of med-
ication and the persistence of the medication, or its metabolites (breakdown
products) in the blood measured over some length of time. We can imagine
that concentration of a metabolite in blood might be related to time, but there
may be individual differences between subjects. Furthermore, the levels from
one subject are likely to be correlated with each other, because they are gener-
ated by the same organism.

Another possible example might be measuring the changes in student scores on
a math test in response to one of three different curricula, with each curriculum
presented by one of four different teachers. We might expect that each of the

1The assumption of constant variance and independence of the residuals are not really
separate assumptions - a pattern in the residuals indicates some dependence in them.

255

256 CHAPTER 18. MIXED EFFECTS MODELS

12 teachers (four per curriculum x 3 curricula) would present the curriculum
in a slightly different way, so there might be a lack of independence between
residuals within a classroom. We can’t really include teacher as a fixed effect
here, becuase each teacher only teaches one curriculum. But we can treat teacher
as a random effect.

We might be able to control for the within subject variation by adding a term
for subject in the model, but this has a major drawback: we have to use a lot
of degrees of freedom estimating coefficients for each subject, and this reduces
our error degrees of freedom, which reduces our ability to detect the thing we
are really interested in (in this case the persistence of the medication).

In linear models we are using a model like y = B0 + B1x + ε to model the effect
of x on y. We refer to the parameters we estimate here as fixed effects. In the
mixed effects model we partition the error portion of the model (ε) into random
effects and error. The random effect are used to account for the variability
between subjects. This allows our model to account for this source of variation
without using degrees of freedom to estimate the coefficients (parameters) for
each.

This is analogous to the split-plot design we discussed in Chapter 13. Instead of
correlation (dependency) between measurements coming from a single subject,
here we expect some correlation of residuals from subplots within a larger plot
(main plot or whole plot) – correlation driven by spatial proximity.

How do you know if an effect is fixed or random? Part of the answer lies in what
you want to estimate. In the drug trial example above our goal is to understand
the way the drug works for a whole population, from which we have drawn
a (hopefully!) representative sample. So we would consider the subjects as
random, but the drug treatments or time after treatment to be fixed. Another
way to ask the question might be “If someone else repeated my experiment
what would be the same and what would be different?” In the example above
the drug and time after treatment variables could be exactly repeated, but the
subject would not. This suggests that subjects is a random effect.2

18.2 A basic example

Let’s begin with an example. We’ll load the package nlme (Non Lin-
ear Mixed Effects) - if you haven’t done so you will need to install it
(install.packages("nlme")). We’ll then load the dataset Machines and
inspect it.

2Though it is worth bearing in mind that unless you have a minimum of 4 or 5 levels for
a factor you are not likely to have sufficient ability to estimate random effects, so effects that
are theoretically random may in some cases be analyzed as fixed.

18.2. A BASIC EXAMPLE 257

library(nlme)
data(Machines)
6 randomly selected workers tested on 3 types of
machine
summary(Machines)

Worker Machine score
6:9 A:18 Min. :43.00
2:9 B:18 1st Qu.:52.42
4:9 C:18 Median :61.60
1:9 Mean :59.65
3:9 3rd Qu.:65.30
5:9 Max. :72.10

This dataset comes from a trial of three brands of machines used in an industrial
process. Six workers in the factory were selected at random and each operated
each machine three times. The response variable is “score” which is a produc-
tivity score - for more information use ? Machines (Note: this will not work
if nlme has not been loaded). If our primary goal is to ask “Which machine
maximizes productivity?” we might start this way:

fm1 <- lm(score ~ Machine, data = Machines)
anova(fm1)

Analysis of Variance Table
#
Response: score
Df Sum Sq Mean Sq F value Pr(>F)
Machine 2 1755.3 877.63 26.302 1.415e-08 ***
Residuals 51 1701.7 33.37

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(fm1)

#
Call:
lm(formula = score ~ Machine, data = Machines)
#
Residuals:
Min 1Q Median 3Q Max

258 CHAPTER 18. MIXED EFFECTS MODELS

-17.3222 -2.1431 0.4444 4.4403 9.3778
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.356 1.362 38.454 < 2e-16 ***
MachineB 7.967 1.925 4.138 0.000131 ***
MachineC 13.917 1.925 7.228 2.38e-09 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 5.776 on 51 degrees of freedom
Multiple R-squared: 0.5077, Adjusted R-squared: 0.4884
F-statistic: 26.3 on 2 and 51 DF, p-value: 1.415e-08

We can see that we have a significant difference associated with brand of machine
(p much less than 0.0001), and it appears that all three machines are likely
different from each other in their productivity. However an examination of
the residuals reveals trouble – evidence of both departure from normality and
unequal variance.

plot(fm1, which = 1:2) # but residuals look a bit strange

52 56 60 64

−
20

−
10

0
5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

363435

−2 0 1 2

−
3

−
1

0
1

2

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q

363435

A bit of reflection might convince us that different workers might also have
different levels of productivity (score). A quick oneway.test() confirms this.

18.2. A BASIC EXAMPLE 259

oneway.test(score ~ Worker, data = Machines)

#
One-way analysis of means (not assuming equal
variances)
#
data: score and Worker
F = 4.866, num df = 5.000, denom df = 22.149,
p-value = 0.003747

The fourth panel of the above figure also suggests that machines may affect
productivity differently for different workers, which suggests an interaction.
In principle we could use Tukey HSD() here to describe teh subtleties of the
worker*machine interaction, but these results would be specific to the 6 workers
selected here - remember, what we really want to know (the differences we really
want to be able to detect) are differences between machines.

fm2 <- lm(score ~ Machine * Worker, data = Machines)
anova(fm2)

Analysis of Variance Table
#
Response: score
Df Sum Sq Mean Sq F value Pr(>F)
Machine 2 1755.26 877.63 949.17 < 2.2e-16 ***
Worker 5 1241.89 248.38 268.63 < 2.2e-16 ***
Machine:Worker 10 426.53 42.65 46.13 < 2.2e-16 ***
Residuals 36 33.29 0.92

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

op <- par(mfrow = c(1, 2))
plot(fm2, which = 1:2)

260 CHAPTER 18. MIXED EFFECTS MODELS

45 55 65

−
2

0
2

Fitted values

R
es

id
ua

ls
Residuals vs Fitted

18

2617

−2 0 2

−
3

−
1

1
3

Theoretical Quantiles
S

ta
nd

ar
di

ze
d

re
si

du
al

s Normal Q−Q
18

2617

par(op)

The ANOVA above shows that when we account for the dependence of machine
productivity on worker both machine and worker differences are very significant.
However the model (coefficients given by summary(fm2)) is difficult to interpret
- the interaction means that different workers get different results from the
machines. What we really want to know is how the machines would work for
the average worker. To work toward this we’ll use the function lme() from
nlme.

fm3 <- lme(score ~ Machine, random = ~1 | Worker, data =
Machines)↪→

Here we’ve created a mixed effects model (an “lme object”) with a random
intercept for each worker. We can query this object with various methods,
which will be rather familiar. A quick review of summary(fm3) (not shown
here) shows estimates for our Fixed effects - the three levels of Machine, and
an estimate of the variation associated with workers.

anova(fm3) # larger F-value than with lm()
plot(fm3) # residuals still odd

18.2. A BASIC EXAMPLE 261

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−2

−1

0

1

45 50 55 60 65 70

summary(fm3)

Linear mixed-effects model fit by REML
Data: Machines
#
Random effects:
Formula: ~1 | Worker
(Intercept) Residual
StdDev: 5.146552 3.161647
#
Fixed effects: score ~ Machine
Correlation:
(Intr) MachnB
MachineB -0.236
MachineC -0.236 0.500
#
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.7248806 -0.5232891 0.1327564 0.6513056 1.7559058
#
Number of Observations: 54
Number of Groups: 6

This is the main benefit of mixed effects models - here we are using the variation
among 6 workers to estimate the general variability associated with workers, as
opposed to trying to estimate the fixed effects for 6 specific workers. Note

262 CHAPTER 18. MIXED EFFECTS MODELS

that the standard deviation of the intercept for Worker is still similar in size to
inter-machine differences.

Note that the output from anova() is a bit different - we have an F test for the
intercept as well as for the effect Machine. Note that the F -value for Machine
is much greater here than in the first model that we fit with lm() - accounting
for worker differences shrinks the residual variance and makes our F test more
sensitive.

However the residuals suggest that we have some trouble - we seem to have more
negative residuals for intermediate fitted values. This may not be a surprise,
we have not accounted for differences between workers in how machines affect
productivity.

We can fit a model with both random intercept and random effect of machine
for each worker. Let’s check the residuals first.

fm4 <- lme(score ~ Machine, random = ~1 + Machine | Worker,
data = Machines)

plot(fm4)

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−2

−1

0

1

2

45 50 55 60 65 70

qqnorm(fm4, abline = c(0, 1))

18.2. A BASIC EXAMPLE 263

Standardized residuals

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

−2

−1

0

1

2

−2 −1 0 1 2

par(op)

The residuals are behaving a bit better here, and look rather similar to those of
our second model. The qqplot shows they are sufficiently near normal.

anova(fm4) # F value lower, but still signif.
summary(fm4)

Linear mixed-effects model fit by REML
Data: Machines
#
Random effects:
Formula: ~1 + Machine | Worker
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
(Intercept) 4.0792806 (Intr) MachnB
MachineB 5.8776433 0.484
MachineC 3.6898543 -0.365 0.297
Residual 0.9615766
#
Fixed effects: score ~ Machine
Correlation:
(Intr) MachnB
MachineB 0.463
MachineC -0.374 0.301
#
Standardized Within-Group Residuals:
Min Q1 Med Q3
-2.39354008 -0.51377574 0.02690829 0.47245471

264 CHAPTER 18. MIXED EFFECTS MODELS

Max
2.53338699
#
Number of Observations: 54
Number of Groups: 6

between machines.

The ANOVA shows that our F -value is still larger than in our first model (with
lm()), but not as large as in our second model (lm() with interaction). However
we now have estimates of differences between our machines that should better
reflect our expectation for the population of workers, rather than for only our
sample of workers. This is one of the main advantages of mixed effects models.

The astute reader may also have noticed that this is an example of repeated mea-
sures - each worker was measured 9 times, and so we’d expect some correlation
between measurements from an individual worker. This is another important
reason we should include worker as a random effect in this model.

18.3 Split-plots

In Chapter 13 we considered one example of a split-plot analysis. We’ll revisit
this analysis here, beginning with the analysis we introduced in Chapter 13.
Review the last section of Chapter 13 if you do not recall the diagnostic features
of a split plot. You can see that there is similarity between the correlation of
residuals in the repeated measures analysis above (correlation of residuals within
subject) and what we might find in a split-plot (correlation of residuals within
main plots).

Rye <- read.csv("../Data/RyeSplitPlot.csv", comm = "#",
stringsAsFactors = TRUE)↪→

summary(Rye)

P.date T.date WdCon Rep RyeDM
P1:20 T1:8 SC:40 I :10 Min. : 104.0
P2:20 T2:8 II :10 1st Qu.: 454.8
T3:8 III:10 Median : 636.0
T4:8 IV :10 Mean : 630.0
T5:8 3rd Qu.: 816.0
Max. :1256.0
P.day T.day
Min. :257.0 Min. :480.0
1st Qu.:257.0 1st Qu.:492.0

18.3. SPLIT-PLOTS 265

Median :272.5 Median :500.0
Mean :272.5 Mean :500.8
3rd Qu.:288.0 3rd Qu.:513.0
Max. :288.0 Max. :519.0

summary(aov(RyeDM ~ Rep + P.date + T.date + Error(Rep/P.date),
data = Rye))

#
Error: Rep
Df Sum Sq Mean Sq
Rep 3 72833 24278
#
Error: Rep:P.date
Df Sum Sq Mean Sq F value Pr(>F)
P.date 1 216531 216531 8.152 0.0648 .
Residuals 3 79686 26562

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
T.date 4 2043518 510879 46.34 5.92e-12 ***
Residuals 28 308693 11025

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The function aov() used here does not create an object that includes residuals,
so analysis of the residuals is not straightforward. Let’s compare this with the
same analysis done using lme()

fm1 <- lme(RyeDM ~ P.date + T.date, random = ~1 | Rep/P.date,
data = Rye)

anova(fm1)

The syntax of the argument random is confusing. We’ve said here that the
intercept (1) is random, for each level of Rep and P.date “within” Rep. This is
how R knows the error structure. Just as the smallest plots (T.date didn’t need
to be included in the Error() statement in the formula in aov(), it needn’t be
included here. Note that P.date is also included as a fixed effect.
Note that the F-values and p-values are very similar. As noted in Chapter 13,
all F -tests are based on Type I SS. If we want something like a Type II SS we

266 CHAPTER 18. MIXED EFFECTS MODELS

can specify anova(fm1, type="marginal"). In this case it makes no difference
because the data is balanced, but of course one can’t count on that!

summary(fm1)

Linear mixed-effects model fit by REML
Data: Rye
#
Random effects:
Formula: ~1 | Rep
(Intercept)
StdDev: 0.03048389
#
Formula: ~1 | P.date %in% Rep
(Intercept) Residual
StdDev: 53.65659 104.9988
#
Fixed effects: RyeDM ~ P.date + T.date
Correlation:
(Intr) P.dtP2 T.dtT2 T.dtT3 T.dtT4
P.dateP2 -0.517
T.dateT2 -0.539 0.000
T.dateT3 -0.539 0.000 0.500
T.dateT4 -0.539 0.000 0.500 0.500
T.dateT5 -0.539 0.000 0.500 0.500 0.500
#
Standardized Within-Group Residuals:
Min Q1 Med Q3
-1.58156310 -0.59932896 -0.02460729 0.40645050
Max
3.49696936
#
Number of Observations: 40
Number of Groups:
Rep P.date %in% Rep
4 8

plot(fm1)

18.3. SPLIT-PLOTS 267

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−1

0

1

2

3

200 400 600 800 1000

The output from summary() gives us estimates for the variation associated with
the random effects, and estimates for the fixed effects. In this case the residuals
look quite good, although there is one value that seems to be an outlier – I leave
it to the reader to find it.
Another useful feature of anova() is that it can be used to compare models.
For example consider that our model above could include an interaction between
P.date and T.date.

fm2 <- lme(RyeDM ~ P.date * T.date, random = ~1 | Rep/P.date,
data = Rye)

anova(fm2)

We could directly compare the two models with a call to anova(), but before
doing so we need to refit them both using ML rather than REML (Maximum
likelihood vs restricted maximum likelihood).3

fm1.ML <- lme(RyeDM ~ P.date + T.date, random = ~1 | Rep/P.date,
data = Rye, method = "ML")

fm2.ML <- lme(RyeDM ~ P.date * T.date, random = ~1 | Rep/P.date,
data = Rye, method = "ML")

anova(fm1.ML, fm2.ML)

Here the comparison shows that adding the interaction effect increases both
AIC and BIC and gives a very non-significant p-value, strongly suggesting the

3Mixed effects models can’t be solved analytically like simple linear models - they are
solved numerically.

268 CHAPTER 18. MIXED EFFECTS MODELS

simpler model is best. (Note that this is different than the result we get if we
call anova() on the models fitted with REML).
Three important notes about lme().
First - the default behavior when NA values are encountered is "na.fail", mean-
ing the call to lme() will return an error. This can be over-ridden using the
argument na.action="na.omit".
Second - model fitting by ML or REML is an interative numerical process, and
in a few cases it may fail to converge. I’ve never actually had this occur, but
I have had instances in which my model is over-specified, and I get an error
message of this sort Error in MEEM (...): Singularity in Backsolve....
This means that there are too few cases of some treatment combination to allow
estimation of all effects. Typically simplifying the model (removing interactions)
solves this.
Third - lme() defaults to polynomial contrasts when a factor is ordered.
This will give L and Q terms (linear and quadratic) for the ordered fac-
tor. If you actually want treatment contrasts, you can either coerce your
ordered factor to a non-ordered factor or change R’s options for type
of contrast using: options(contrasts=c(factor="contr.treatment",
ordered="contr.treatment")). If you do so, save your old options as you
would using par() and you can restore the original options.

18.4 Summary

As noted in the introduction, mixed effects models is a huge topic, and there are
many different types of models that can be fit. A good resource is Mixed Effects
Models and Extensions in Ecology with R by Zuur et al. There are also many
other good resources available on the web, though many seem to be somewhat
discipline-specific, so a bit of digging will probably be required.
The newer package lme4 provides a similar function lmer(). At this point
lmer() involves some extra steps as p-values are not directly calculated for the
fixed effects4 but can be estimated via a Markov Chain Monte Carlo approach,
and there is a function provided for this.

18.5 Exercises

1) Refit the split-plot model for the Rye data from above without the outlier.
Do the residuals suggest that the model is valid? How did removing the outlier

4The authors provide some good reasons for this - basically that “decomposition of the
error term into random effects and error changes the error degrees of freedom and there is no
consensus among statistical theoreticians on what the correct error df to use for the F-tests
is.”

http://www.highstat.com/book2.htm
http://www.highstat.com/book2.htm

18.5. EXERCISES 269

affect the estimation of the fixed and random effects?

2) Another example of a nested model that may be similar to a repeated mea-
sures or a split plot can be seen in the dataset RatPupWeight that is included
in nlme. Here are weights for 322 rat pups exposed to one of three experimental
treatments. We’d expect that weight might be influenced by sex, size of litter
and the experimental treatments, but there is likely to be an effect of the mother
(litter) also that could mask these others. Fit a mixed effects model of weight
as a function of treatment, litter size, and sex with litter as a random effect.
How well does this appear to fit the data based on the residuals? Are there
significant interactions between the fixed effects? NOTE : Treatment here is
coded as an ordered factor, and by default lme() will use polynomial contrasts
rather than treatment contrasts for ordered factors. To get treatment contrasts
(which we want here) you should convert Treatment to a non-ordered factor
using factor(...,ordered=FALSE).

270 CHAPTER 18. MIXED EFFECTS MODELS

Chapter 19

Fitting Other Models

Non-linear least squared models, logistic reges-
sion

19.1 Introduction

The model fitting we have done so far has largely been confined to linear models.
But there is a wide array of models that we can fit. Here again, as in the last
chapter, we will not go deep into these topics - to do so would involve an entire
semester. Instead we’ll consider two fairly common cases of fitting non-linear
models - Logistic regression and fitting arbitrary equations.

19.2 Logistic regression

Like the t-test, logistic regression is used when there is one binary response vari-
able (e.g. a factor with two levels 1) and one continuous predictor variable. The
difference is that a logistic regression model allows us to predict the probability
of the state of the binary response based on the continuous predictor, which the
t-test does not allow.
This is sometimes called logit regression because the logit transformation on the
data turns this into a linear regression. The logit is the natural log of the odds,
where the odds are p/(1 − p) and p is the probability of some event occurring.
Thus:

ln(p

1 − p
) = a + bx

1A multiple level factor can be used as the response in multinomial logistic regression -
RSeek can point you to more information.

271

272 CHAPTER 19. FITTING OTHER MODELS

The logistic curve should be familiar to anyone who has studied much about
population growth, though the formulation used in that context is generally a
bit different:

dN

dt
= rN(1 − N

K
)

where N is the population size andK is the maximum value N can take - the
Carrying capacity.

A more general formulation of the logistic curve is:

f(x) = L

1 + e−k(x−x0)

where L is the maximum possible value of y, x0 is the midpoint of the curve,
and k is the steepness of the curve.

curve(2/(1 + exp(-1 * (x - 4))), from = -2, to = 10, ylab = "")
legend("bottomright", inset = 0.02, c(expression(italic(L) ==

2), expression(italic(x)[0] == 4), expression(italic(k) ==
1)), bty = "n")

−2 0 2 4 6 8 10

0.
0

1.
0

2.
0

x

L = 2
x0 = 4
k = 1

The assumptions here are that the observations are independent and that the
relationship between the logit (natural log of the odds ratio) and the predictor
variable is linear. Note that the second assumption here is just expressing what
we noted above where we introduce the term logit.

In R we’ll use the function glm() to fit logistic regressions by specifying
family="binomial" in the call to glm().

19.2. LOGISTIC REGRESSION 273

We’ll begin with an example. The package MASS includes the data set menarche,
which describes the age at menarche of 3918 girls in Poland in 1965 2. The data
includes mean age for a group of girls of the same age (Age), the number in
each group (Total) and the number in each group who had reached Menarche
(Menarche).

library(MASS)
data(menarche)
plot(Menarche/Total ~ Age, data = menarche, ylab = "Proportion

passed menarche")↪→

10 12 14 16

0.
0

0.
4

0.
8

Age

P
ro

po
rt

io
n

pa
ss

ed
 m

en
ar

ch
e

This is a perfect data set to demonstrate logistic regression as the plot shows -
for an individual the response can be only no (0) or yes (1), but for the groups
proportions can vary between 0 and 1. Since the response variable here is the
number of yesses and number of nos we’ll code the response as a data frame
using cbind().

lr1 <- glm(cbind(Menarche, Total - Menarche) ~ Age, data =
menarche,↪→

family = "binomial")
summary(lr1)

#
2Data from: Milicer, H. and Szczotka, F., 1966, Age at Menarche in Warsaw girls in 1965,

Human Biology, 38, 199-203

274 CHAPTER 19. FITTING OTHER MODELS

Call:
glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = "binomial",
data = menarche)
#
Deviance Residuals:
Min 1Q Median 3Q Max
-2.0363 -0.9953 -0.4900 0.7780 1.3675
#
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -21.22639 0.77068 -27.54 <2e-16 ***
Age 1.63197 0.05895 27.68 <2e-16 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
(Dispersion parameter for binomial family taken to be 1)
#
Null deviance: 3693.884 on 24 degrees of freedom
Residual deviance: 26.703 on 23 degrees of freedom
AIC: 114.76
#
Number of Fisher Scoring iterations: 4

We can interpret the slope of the model as log of the change in the odds ratio.
In this case, the slope (1.632) tells us that each year of age increases the odds
of menarche by 5.114-fold.

Furthermore (though not so interesting) the odds are massively in favor of a
“no” for a newborn girl (odds ratio for age = 0 is e−21.22 or 6.051∗10−10, about
1.6 billion:1 odds. This highlights one feature of of logistic regression - the
models are often only meaningful over a limited range of the predictor variable
- in this case about 10-16 years 3.

What is more interesting is to use the model to characterize the median age
at menarche, or the age at which the probability is 0.5. Recall the regression
equation from above:

ln(p

1 − p
) = a + bx

We want to solve for p = 1 − p; an odds ratio of 1. Since ln(1) = 0, then
x = −a/b and we can find this value by dividing the negative of the intercept
estimate by the slope estimate.

3This applies much more broadly to linear models of all kinds - they probably don’t make
sense outside of the range of the data from which they were characterized.

19.2. LOGISTIC REGRESSION 275

-summary(lr1)$coef[1, 1]/summary(lr1)$coef[2, 1]

[1] 13.00662

The model tell us that at 13 years of age the probability is 50%.

plot(Menarche/Total ~ Age, data = menarche, ylab = "Proportion
passed menarche")↪→

lines(menarche$Age, lr1$fitted, type = "l", col = "red")
abline(v = 13.006, h = 0.5, lty = 3)

10 12 14 16

0.
0

0.
4

0.
8

Age

P
ro

po
rt

io
n

pa
ss

ed
 m

en
ar

ch
e

par(mfrow = c(2, 2), mar = c(4, 4, 2.5, 0.5))
plot(lr1)

276 CHAPTER 19. FITTING OTHER MODELS

−6 −4 −2 0 2 4 6 8

−
1.

5
0.

0
1.

0

Predicted values

R
es

id
ua

ls

Residuals vs Fitted

2

10

3

−2 −1 0 1 2

−
1.

5
0.

0
1.

0

Theoretical Quantiles

S
td

. P
ea

rs
on

 r
es

id
.

Normal Q−Q

2

10

3

−6 −4 −2 0 2 4 6 8

0.
0

0.
4

0.
8

1.
2

Predicted values

S
td

. P
ea

rs
on

 r
es

id
. Scale−Location

2 103

0.00 0.04 0.08 0.12
−

1.
5

0.
0

1.
0

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

Cook's distance

Residuals vs Leverage
10

15

17

We don’t need to assume normality of the residuals here, but a lack of pattern
in the residuals does suggest that the model fits well - there does not seem to
be any latent variability that would be explained by adding more terms.
Overall performance of the model can be evaluated by comparing the Null and
Residual deviance (see output from summary(lr1), above). The Null deviance
represents deviance of a model with only the grand mean, so the reduction in
deviance represents the deviance explained by the model - about 3667 on one
degree of freedom. In this case the p-value is not different from zero.

with(lr1, pchisq(null.deviance - deviance, df.null - df.residual,
lower.tail = FALSE))

[1] 0

For a second example let’s consider the faithful data we examined in Chapter
6 - we have the length of the eruption (eruptions) and the length of time
between one eruption and the next (waiting) for 272 eruptions of the geyser
“Old Faithful”. For this example we’ll create a factor for eruption length

data(faithful)
faithful$length <- cut(faithful$eruptions, breaks = c(0, 3,

6), labels = c("S", "L"))

19.2. LOGISTIC REGRESSION 277

with(faithful, plot(waiting, jitter(as.numeric(length) - 1,
amount = 0.04), ylab = "", yaxt = "n"))

axis(side = 2, at = 0:1, labels = c("Short", "Long"))

50 60 70 80 90

waiting

S
ho

rt
Lo

ng

Here you can see we have plotted the data with a bit of jitter in the y-axis to
help us better see points that would otherwise over-plot. Notice that here we
are dealing with the individual events, so the response is truly binary - either an
eruption is “Short” or “Long”. We can fit a logistic regression as we did before.

lr2 <- glm(length ~ waiting, family = "binomial", data =
faithful)↪→

summary(lr2)

#
Call:
glm(formula = length ~ waiting, family = "binomial", data = faithful)
#
Deviance Residuals:
Min 1Q Median 3Q Max
-2.60716 -0.00778 0.00299 0.02362 1.82481
#
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -45.5228 10.7540 -4.233 2.30e-05 ***
waiting 0.6886 0.1632 4.220 2.44e-05 ***

278 CHAPTER 19. FITTING OTHER MODELS

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
(Dispersion parameter for binomial family taken to be 1)
#
Null deviance: 354.387 on 271 degrees of freedom
Residual deviance: 25.163 on 270 degrees of freedom
AIC: 29.163
#
Number of Fisher Scoring iterations: 9

We’ll interpret the coefficients as before - each increase of one minute in the
waiting time increases the odds ratio by exp(0.6886) or 1.99 that the next
eruption will be longer than 3 minutes.

For a waiting interval of 63 minutes we can calculate the odds as the exponent of
the sum of the intercept and 63 times the slope (exp(summary(lr2)$coef[1,1]+63*summary(lr2)$coef[2,1]))
or 0.117.

As above we can find the point with a 50% probability by setting the odds ratio
equal to 1 or logit=0 and solving a + bx for x; the ratio of the intercept to the
slope. This gives a waiting time of 66.11 minutes

-summary(lr2)$coef[1, 1]/summary(lr2)$coef[2, 1]

[1] 66.11345

Plotting this model shows that the fit isn’t as perfect as the first example, but
we’re plotting the individual data points were which can’t take a value between
0 and 1.

with(faithful, plot(waiting, jitter(as.numeric(length) - 1,
amount = 0.04), ylab = "", yaxt = "n"))

axis(side = 2, at = 0:1, labels = c("Short", "Long"))
lines(cbind(faithful$waiting,

lr2$fitted)[order(faithful$waiting),↪→

], col = "red")
abline(h = 0.5, v = 66.113, lty = 3)

19.2. LOGISTIC REGRESSION 279

50 60 70 80 90

waiting

S
ho

rt
Lo

ng

One feature of a model of this sort is there is some pattern in the residuals -
these represent values of waiting for which fitted values are less than about 0.9
and greater than about 0.1 - since the variable “length” can only take a value
of “long” or “short”, the model can’t predict an intermediate value.

plot(lr2, which = 1)

−10 0 10 20

−
6

−
2

2

Predicted values

R
es

id
ua

ls

glm(length ~ waiting)

Residuals vs Fitted

211

47215

Logistic regression can be extended with multiple predictors and multinomial

280 CHAPTER 19. FITTING OTHER MODELS

responses, but that is beyond the scope of these notes.

19.3 Fitting other non-linear models

Sometimes the model that we want to fit is not linear, but we know (or at
least hypothesize) what it should be. For example, enzyme kinetics are often
characterized by Michaelis-Menten kinetics, where reaction rate is affected by
enzyme concentration in the following way:

f(x, (K, Vm)) = Vmx

K + x

where Vm is the maximum reaction rate and K is the concentration that yields
half of Vm. We can fit such an equation to data using the function nls(). We’ll
demonstrate with some data on the kinetics of Pyridoxal phosphate (PP) which
is involved in catalyzing the breakdown of Glutamate.

ppg <- read.csv("../Data/PP-Glutamate.csv", comm = "#")
head(ppg)

We have concentration of PP (PP) and the reduction in concentration of Glu-
tamate (Glutam). nls() may work better if we give starting values (guesses)
from which it will begin optimizing. Here we’ll specify values near the max and
half that value.

ek1 <- nls(Glutam ~ Vm * PP/(K + PP), data = ppg, start = list(K
= 0.5,↪→

Vm = 1))

If we had a large data set in might be simpler to specify start this way: list(K
= max(ppg$Glutam)/2, Vm = max(ppg$Glutam)). But this is specific to this
particular functional form (Michaelis-Menten), and might not work on types of
models. Sometime we can get away with a naive call to nls() without specifying
start, as below - we may get a warning, but the coefficients are still calculated
correctly. But we can’t count on that happening all the time.

plot(Glutam ~ PP, data = ppg, ylim = c(0, 1), ylab = "Glutamate
(mg/min)",↪→

xlab = "Pyridoxal phosphate (uM)")
paras <- summary(ek1)$coeff[, 1]
curve((paras[2] * x)/(paras[1] + x), from = 0, to = 10, add =

TRUE)↪→

19.3. FITTING OTHER NON-LINEAR MODELS 281

0 2 4 6 8 10

0.
0

0.
4

0.
8

Pyridoxal phosphate (uM)

G
lu

ta
m

at
e

(m
g/

m
in

)

summary(nls(Glutam ~ Vm * PP/(K + PP), data = ppg))$coeff

Warning in nls(Glutam ~ Vm * PP/(K + PP), data = ppg): No starting values specified for some parameters.
Initializing 'Vm', 'K' to '1.'.
Consider specifying 'start' or using a selfStart model

Estimate Std. Error t value Pr(>|t|)
Vm 0.963516 0.03953373 24.372000 3.136878e-07
K 1.137725 0.15943859 7.135821 3.814812e-04

summary(ek1)

#
Formula: Glutam ~ Vm * PP/(K + PP)
#
Parameters:
Estimate Std. Error t value Pr(>|t|)
K 1.13772 0.15944 7.136 0.000381 ***
Vm 0.96351 0.03953 24.372 3.14e-07 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.03697 on 6 degrees of freedom

282 CHAPTER 19. FITTING OTHER MODELS

#
Number of iterations to convergence: 6
Achieved convergence tolerance: 8.036e-06

We have our estimates for the parameters K and Vm and t-tests for difference
from zero. As we saw in Chapter 11 we can use the Standard errors of these
estimates to test hypotheses about them. For example, if we hypothesized that
Vm = 1, a quick look at the output from summary(ek1) should convince us that
we can’t reject that hypothesis because the hypothesized value (1) is within 2
standard errors (2*0.0395) of the estimate (0.964). We could also calculate a
p-value as in Chapter 11.

Note that nls() can handle many types of functions, and we may be trying to
fit the wrong model to the data. Checking the residuals is a good way to see
how well the model fits. Note that the package nlme is required to plot nls
objects.

require(nlme)
plot(ek1)

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−1.5

−1.0

−0.5

0.0

0.5

1.0

0.2 0.4 0.6 0.8

In this case there is a hint of structure here (low residuals at low fitted values,
higher at high fitted values), but it is harder to be certain with a small number
of data points.

Using nls() only makes sense if we have some hypothesized functional form for
the relationship - there are an infinite number of possible functional forms, and
all nls() can do is tell us how well any one of them fits your data.

19.3. FITTING OTHER NON-LINEAR MODELS 283

If we’re comparing models fit by nls() (nls objects) we can use the function
anova() to compare 2 models as long as they are nested. Lets fit a 1st order
and 2nd order polynomial to our ppg data to demonstrate.

ek2 <- nls(Glutam ~ a + b * PP, data = ppg, start = list(a = 1,
b = 1))

ek3 <- nls(Glutam ~ a + b * PP + c * PPˆ2, data = ppg, start =
list(a = 1,↪→

b = 1, c = 1))

Note that here in the calls to nls() we are specifycing our coefficients with a,
b, c as names. You can use any names you want for the parameters, but the
variable names must match variable names in the data argument.

anova(ek2, ek3)

Analysis of Variance Table
#
Model 1: Glutam ~ a + b * PP
Model 2: Glutam ~ a + b * PP + c * PP^2
Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)
1 6 0.189460
2 5 0.027118 1 0.16234 29.933 0.002779 **

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(ek3)

#
Formula: Glutam ~ a + b * PP + c * PP^2
#
Parameters:
Estimate Std. Error t value Pr(>|t|)
a 0.186116 0.052679 3.533 0.016686 *
b 0.213932 0.029402 7.276 0.000767 ***
c -0.015311 0.002798 -5.471 0.002779 **

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.07364 on 5 degrees of freedom
#
Number of iterations to convergence: 1
Achieved convergence tolerance: 2.223e-08

284 CHAPTER 19. FITTING OTHER MODELS

This indicates that the 2nd order polynomial is a better fit than the 1st order,
and it is significant in all parameters. But the residuals plot shows much more
evidence of structure than the plot of ek1 residuals and the residual standard
error is better. More importantly, we have theoretical reason to prefer the first
model.

plot(ek3)

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

−1.0

−0.5

0.0

0.5

1.0

0.4 0.6 0.8

Note: nls() uses an iterative numerical solver. In some instances it may fail
to converge on a solution, and you will get an error message telling you this.
You can set the max iterations higher using control = list(maxiter=200,
warnOnly=TRUE).

19.4 Exercises

1) Using the built-in data set mtcars fit a logistic regression of am (transmission
type – a factor coded as 0 & 1 for “automatic” and “manual” respectively) as a
function of wt (weight in thousands of pounds). At what weight is an automatic
transmission three times as likely as a manual transmission? (HINT: Graphing
the data will help to figure out the odds you need to solve for.)

2) The dataset given below 4comes from a third order polynomial, and includes
some random noise. Use nls() to fit both a 1st order (a + bx) and a 3rd order

4If you copy and paste this data into the console you may have to delete some returns and
add “;” before the y, or just paste the x and y data separately.

19.4. EXERCISES 285

(a + bx + cx2 + dx3) and compare the models - how does the residual error
compare? Does the distribution of the residuals give any reason to prefer one
over the other?

x=c(1.08,4.55,2.92,5.74,8.36,5.84,5.08,8.05,9.74,1.26,4.63,3.43,
8.22,5.52,9.30,7.70,4.10, 1.16,7.89,6.40,7.29,1.96,6.59,4.35,
4.65)

y=c(8.42,14.10,15.80,15.60,16.60,17.10,14.80,16.40,21.80,11.50,
14.20,18.90,16.20,15.40, 20.60,13.40,16.70,15.20,18.30,14.00,
13.20,15.20,13.30,14.40,15.40)

3) Graph the functions given by the two models you created above over the
range -3:13 (this does not mean plot the residuals).

286 CHAPTER 19. FITTING OTHER MODELS

Chapter 20

Writing functions

Customizing R with functions and packages

20.1 Introduction

Two of the greatest strengths of R are adpatability and extensibilty – R can
be customized to do almost anything (of course this may require time). In
many cases, the tool you want may already exist in a package, and the tools we
discussed in Chapter 5 should help you find it. In this chapter we’ll consider
two of the most important tools that support adaptability and extensibility -
creating new functions and creating packages.

20.2 Creating a function

20.2.1 Defining a function

It is dead simple to define a function in R - simply use the function function()
to define the new function. Some of what follows here is specific to R, but some
is “common sense” programming advice.

fn.demo <- function(x, y) xˆ2 - y
fn.demo(4, 5)

[1] 11

Some important detail to note about the use of function()
* The new function (fn.demo() in this case) is created in the user’s workspace.

287

288 CHAPTER 20. WRITING FUNCTIONS

It will only persist between R sessions if the workspace is loaded or if an R
script that defines the function is sourced (the code in the file is run). * The
syntax here is idiosyncratic – the parentheses contain the arguments for the new
functions. The code that is run when the function is called is given after the
parentheses. For a simple function such as we have here, when everything fits
on one line, no braces are necessary. If the function requires more than a single
line (includes a line break) the braces ({ }) are necessary.

fn.demo <- function(x, y = 5) {
xˆ2 - y

}
fn.demo(4)

[1] 11

fn.demo(4, y = 2)

[1] 14

fn.demo(y = 2, x = 4)

[1] 14

In this example we show how default values can be specified in the function
definition. As long as no value is specified for y, then the default value is used.
Named arguments can be passed in any order. What will happen if we call this
function without a specified value for x? (Check your guess.)

Now we’ll add a bit more complexity to the function. Before you run this
code, remove z from your workspace/enviromnent (rm(z)) in case there was
something called z in the workspace).

fn.demo <- function(x, y = 5, verbose = FALSE) {
z <- xˆ2 - y
if (verbose == TRUE) {

cat(paste(x, " squared minus ", y, " = ", z, sep = ""))
} else {

return(z)
}

}
fn.demo(5)

[1] 20

20.2. CREATING A FUNCTION 289

fn.demo(3, ver = TRUE)

3 squared minus 5 = 4

z

Error in eval(expr, envir, enclos): object 'z' not found

This demonstrates an important point. After running our fn.demo() function a
couple of times we call z but it does not exist, though it is defined in the function.
This highlights that functions are not evaluated in the user workspace, rather
they are evaluated in a separate environment. This means that z is created in
a different environment where the function is evaluated. This has a couple of
important implications. First, you can name objects in your function without
concern about conflicting or overwriting objects in the user environment when
the function is called. Second - if you want to get a value out of a function
you need to make the function return the value using return(). Note that if
the end of the function is reached and return() has not been called the last
expression evaluated will be returned.

fn.demo <- function(x, y = 5, verbose = FALSE) {
z <- xˆ2 - y
if (verbose == TRUE) {

cat(paste(x, " squared minus ", y, " = ", z, sep = ""))
} else {

return(z)
}
z ## <- added

}
fn.demo(5)

[1] 20

fn.demo(5, ver = TRUE)

5 squared minus 5 = 20

[1] 20

We can demonstrate this by adding a line z (see ## added, above). If we call
fn.demo() with verbose=T the if() expression avoids the call to return()

290 CHAPTER 20. WRITING FUNCTIONS

and so z is returned. With verbose=F (default) the return() is evaluated and
so z is not returned a second time.
If you want to return more than one value you can return a vector, list, or data
frame (depending on what makes sense), and such an object can be assigned or
indexed like any other vector in R.

fn.demo <- function(x, y = 5) {
c(x, y, xˆ2 - y)

}
fn.demo(6)

[1] 6 5 31

fn.demo(6)[3]

[1] 31

a <- fn.demo(3.7)
a

[1] 3.70 5.00 8.69

In general functions are expected to return objects, and to have no other effects.
This almost always means that you must assign the output of a function if you
want to use it later (you’ve probably noticed this by now). However there may
be occasions where it might make sense to have a function that modifies an
object that exists in the user’s workspace. In this case we use the <<- operator
1. Note that the use of the <<- operator means that your function is now making
assumptions about the context from which it is called, and this adds all sorts
of opportunity for failure and mayhem.

a <- 5
bad.fn <- function(b = 7) {

a <<- b
}
a

[1] 5

1Actually it is a bit more subtle - when <<- is used in an assignment the assignment occurs
in the environment from which the function was called. This could be the workspace, but
if the function is called by another function it could be the environment where the calling
function is evaluated.

20.2. CREATING A FUNCTION 291

bad.fn(14)
a

[1] 14

This example is ridiculously simplistic, and it doesn’t make sense to do this -
you could just assign the output of the function to a variable. However, there
may be situations where it might make sense to do this - for example if one
were working with large arrays of data the copying of the data that would be
required to return the entire matrix might slow down processing enough to make
it worthwhile to write a function using the <<- operator.

My advice is: if use of <<- seems warranted, it would be worth writing the
function so as to also print a message about the object that was changed. What
we want to avoid is creating functions that have invisible side effects. Recall
that in general the only way to change an object in R is via explicit assign-
ment - functions written with <<- violate this situation, and so should only be
undertaken with great care.

20.2.2 Finding and preventing errors

This brings us to the topic of finding and preventing errors. Lets see what
happens when we call our function with the wrong type of data as an argument.

fn.demo <- function(x, y = 5) {
z <- x + 10 - y
return(z)

}

fn.demo(x = "black")

Error in x + 10: non-numeric argument to binary operator

Here we’ve fed our function a character value when it was expecting a numeric
value. In this case it is rather easy to find the error, but in a longer function
in might be rather difficult. The function debug() can help us track down
problems in functions. We’d call the function like this:

debug(fn.demo)
fn.demo(x = "black")

292 CHAPTER 20. WRITING FUNCTIONS

Use of debug() can’t be easily demonstrated in a document like this - you’ll need
to try it yourself by running it in the console. Note that we actually run 2 lines to
get debug() working - the first launches debug() on the next expression. Using
debug() gives us a view into the environment where the function is evaluated -
in RStudio we see the function environment in the environment browser rather
than our workspace when we are running debug(). This can help understand
the source of errors, as we can determine the structure and content of an object
within the function. (Note: Since debug() is an interactive funciton, you can’t
easily use it in compiled documents, which is why the code I demonstrated above
was not run).
Of course, preventing errors is even better than finding them when they occur.
We can use the function stop() to halt execution and print an error message.

fn.demo <- function(x, y = 5) {
if (is.numeric(x) == FALSE | is.numeric(y) == FALSE)

stop("don't be ridiculous \n x & y must be numeric")
z <- x + 10 - y
return(z)

}
fn.demo(x = "black")

Error in fn.demo(x = "black"): don't be ridiculous
x & y must be numeric

The most insidious errors are those in which a function returns a value but
returns the wrong value. A common cause (but certainly not the only cause) of
this behavior is missing values.

mean.se <- function(x) {
m <- mean(x)
se <- sd(x)/(sqrt(length(x)))
cat(paste("mean = ", m, "; se = ", se, "\n"))

}
a <- c(2, 3, 4, 5, 6)
mean.se(a)

mean = 4 ; se = 0.707106781186548

b <- a
b[3] <- NA
mean.se(b)

mean = NA ; se = NA

20.2. CREATING A FUNCTION 293

Here we get a correct result when there are no missing values and the NA value
propagates if there is an NA. This is not too bad because we know we have a
problem (though if the function was more complex finding the problem might
not be tough). A more serious problem would arise if we incompletely fixed the
NA problem.

mean.se <- function(x) {
m <- mean(x, na.rm = TRUE)
se <- sd(x, na.rm = TRUE)/(sqrt(length(x)))
cat(paste("mean = ", m, "; se = ", se, "\n"))

}
mean.se(a)

mean = 4 ; se = 0.707106781186548

mean.se(b)

mean = 4 ; se = 0.816496580927726

The function runs and returns values, but does not return the value we intended
because we are including NA values in our calculation of n (length(x)).

mean.se <- function(x) {
m <- mean(x, na.rm = TRUE)
se <- sd(x, na.rm = TRUE)/(sqrt(sum(is.na(x) == FALSE)))
cat(paste("mean = ", m, "; se = ", se, "\n"))

}
mean.se(a)

mean = 4 ; se = 0.707106781186548

mean.se(b)

mean = 4 ; se = 0.912870929175277

Of course, this example is obvious as so many are - it is hard to make a simple
demonstration of a subtle problem.

294 CHAPTER 20. WRITING FUNCTIONS

20.2.3 Tips for writing functions

• Break the problem down into steps and write several functions - this
modularity makes debugging easier and allows you to reuse more of your
code.

• Name arguments as clearly as possible.

• Comment your code liberally.

• Think imaginatively about what could go wrong, check inputs, and provide
intelligible error messages.

Developing custom functions could save a lot of time and make your work sim-
pler. This blog post (http://rforpublichealth.blogspot.com/2014/07/3-ways-
that-functions-can-improve-your.html) provides some examples.

If you develop functions that are useful for your work you could store them in a
special R script file. It is possible to modify your R environment to source this
file on start-up - see (http://www.statmethods.net/interface/customizing.html).
But if you get to that point you might want to consider creating a package.

20.3 Creating a package

If we think of R packages as items that are available from the repositories we
may miss some of their utility. A package could be a useful tool for loading
custom functions and including some documentation on their use. It could be
a tool for sharing tools, routines, and even data among collaborators. While
the R packages that we access from CRAN have been approved, we can rather
easily create our own packages.

First we’ll install some packages.

install.packages("devtools")
install.packages("roxygen2")
library(devtools)
library(roxygen2)

Now we can go ahead and create the package.

create("easy.demo")

Your working directory will now contain a folder called easy.demo. This in-
cludes several files. The first one you should attend to is the “DESCRIPTION”

http://rforpublichealth.blogspot.com/2014/07/3-ways-that-functions-can-improve-your.html
http://rforpublichealth.blogspot.com/2014/07/3-ways-that-functions-can-improve-your.html
http://www.statmethods.net/interface/customizing.html

20.3. CREATING A PACKAGE 295

file. Basically provide your contact information and a short description of the
package contents.

Now we’ll copy the function mean.se() from our last example above, paste it
into a new R script file and save it as “meanANDse.R” in the “R” directory in
the “easy.demo” folder.

Now we need to add documentation. This will be done mostly automatically by
roxygen2. We’ll paste these specially formatted comments into the beginning
of the “mean_se.R” file, and then save. Obviously, for your own function you
would add the relevant documentation here.

#' Mean and Standard Error
#'
#' This function returns mean and standard error of the mean.
#' @param x An object whose mean and se will be returned.
#' @keywords summary
#' @export
#' @examples
#' a <- rnorm(n=15,mean=6,sd=4)
#' mean_se(a)

Now all we need to do is set our working directory to the the “easy.demo” folder
and invoke the function document()

setwd("easy.demo")
document()
setwd("..")

All that is left to do is install it.

install("easy.demo")

Type ? mean.se and see if it worked.

meanANDse(a)

mean = 4 ; se = 0.707106781186548

Not too difficult. Notice that easy.demo does not appear in your “Packages”
tab. It was installed using install() from the devtools package. A full
installation would be done like this:

install.packages("easy.demo",repos=NULL,type="source")

296 CHAPTER 20. WRITING FUNCTIONS

Note that _ and any mathematical operators (+, -, *, /, and ˆ) can’t be used in
function names in packages. The period (.) can be used in function names but
it has special meaning - if we named this function within the package mean.se it
would be interpreted as a function to determine the mean of objects of type se
- this is how generic function are denoted (E.G. plot.lm() is the function that
plots a regression line from an lm object, when we call plot() on an lm object,
plot.lm() actually does the work). This is useful if you develop a function that
creates an object of type mess- you can develop methods like summary.mess()
and plot.mess() to extend generic R functions to deal with your new object
type.

A comprehensive guide to developing R packages is beyond these notes, and
several exist already 2. Instead I will include a couple of helpful links here should
you want to investigate this further. I used several resources while developing
this demo, this page was the most useful. There is also an RStudio page that
give more information.

20.4 Exercises

1) Write a function that does something interesting or amusing. The goal is
not massive complexity (but it should require more than a couple of lines of
code), just that you play around a bit with something that is a somewhat more
complex than the trivial examples we’ve included here. Your function should
include some basic error checking with informative error messages (for example
making sure arguments are of the correct type).

If you’re at a loss for ideas here are a few: 1) calculate a vector of differences
between row and column sums of a square matrix (see ?colSums); 2) take a
text string and extract numbers from it to generate several random polygons;
3) extract coefficients and calculate their 95% confidence intervals and plot
them.

Note: You will need to add the chunk option error=TRUE to R code chunks that
might produce errors (or as a document option) if you want errors to show up
in your knitr output - otherwise errors stop compilation.

2The definitive guide can be found at (http://cran.r-project.org/doc/manuals/R-exts.
html).

http://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://support.rstudio.com/hc/en-us/articles/200486488-Developing-Packages-with-RStudio
http://cran.r-project.org/doc/manuals/R-exts.html
http://cran.r-project.org/doc/manuals/R-exts.html

	Introduction
	Basics
	The console, the editor, and basic syntax in R
	The Terminal
	Working with Vectors
	Sub-setting Vectors - the magic ``[]''
	Other Useful Functions
	A Comment about R Snytax
	Loops in R.
	Exercises.

	Qualitative Variables
	Creating and using categorical variables in R
	Introduction
	The Function factor().
	Visualizing Qualitative Variables.
	How Factors are Stored in R
	Changing Factor Levels
	Hypothesis Testing for Factors
	Exercises.

	Quantitative Variables
	Creating and using continuous variables in R
	Introduction
	Working with Numeric Data
	Hypothesis Testing
	Resistant measures of center and spread
	Visualizing Quantitative Data
	Converting Quantitative Data to Qualitative
	Fitting and Modeling Distributions
	Exercises.

	Documenting Your Work
	How not to forget what you were doing
	Introduction
	Background
	An Example
	Compilation from the console
	Help! I'm Getting an Error!
	Exercises.

	Help in R
	What to do when you need help
	Introduction.
	R's Help System
	Help! I Don't Know Which Function to Use.
	I Need More Help
	Understanding Errors
	Exercises

	Bivariate Data
	Basic approaches to dealing with two variables
	Introduction
	Two Qualitative Variables
	Two Quantitative Variables
	Qualitative and Quantitative Variables
	Exercises

	The Data Frame
	The R equivalent of the spreadsheet
	Introduction
	Data Frames
	Attaching data
	Changing Data Frames
	Exercises

	Importing Data
	Getting your data into R
	Introduction
	Importing Data
	An Example
	An Easier Way (with Caveats!)
	Importing Other Data Types
	Some Typical Problems
	Exercises

	Manipulating Data
	An introduction to data wrangling
	Introduction
	Summarizing Data
	Reformatting Data from ``Wide'' to ``Long''
	Reshape
	Merging Data Sets
	More about Loops
	Exercises

	Working with multiple variables
	Some basic tools for multivariate data
	Introduction
	Working with Multivariate Data
	An Example
	PCA
	Clustering
	Exercises

	Linear Models I
	Linear regression
	Introduction
	Violation of Assumptions and Transformation of Data
	Hypothesis Testing
	Predictions and Confidence Intervals from Regression Models
	Exercises

	Linear Models II
	ANOVA
	I. Introduction
	One-way ANOVA
	For violations of assumptions.
	Multi-Way ANOVA - Understanding summary(lm())
	Multi-Way ANOVA - Calculating group means
	Multi-Way ANOVA - Getting a handle on interactions
	Multi-Way ANOVA - Tukey HSD and family-wise error
	HSD.test - a useful tool for ANOVA
	Exercises

	Linear Models III
	More Linear Models
	Introduction
	Multiple Regression
	ANCOVA
	About Sums of Squares in R
	Resistant Linear Models
	Specifying Contrasts.
	More Complex Designs
	Exercises

	Productivity Tools in R
	More advanced documentation and managing projects
	Introduction
	Getting stated with markdown
	Managing projects
	Using R and LaTeX via Knitr
	Exercises

	Visualizing Data I
	Enhancing scatter plots
	Introduction
	Basic Scatter Plots
	Multi-Panel Plots I: Layout
	Adding a Secondary y-axis
	Summary
	Exercises

	Visualizing Data II
	Errorbars and polygons
	Introduction
	Scatter Plot with Error Bars
	Scatter Plots with Confidence Ribbons
	Error Bars in 2 Dimensions
	Reversing Axes
	Summary
	Fun with R graphics
	Exercises

	Visualizing Data III
	Boxplots and barplots
	Introduction
	Boxplots
	Barplots
	Summary
	Exercises

	Mixed Effects Models
	More advanced documentation and managing projects
	Introduction
	A basic example
	Split-plots
	Summary
	Exercises

	Fitting Other Models
	Non-linear least squared models, logistic regession
	Introduction
	Logistic regression
	Fitting other non-linear models
	Exercises

	Writing functions
	Customizing R with functions and packages
	Introduction
	Creating a function
	Creating a package
	Exercises

