Essential R

Eric Nord

Contents

Introduction 5
1 Basics 9
The console, the editor, and basic syntax in R 9
1.1 The Terminal 9
1.2 Working with Vectors 13
1.3 Sub-setting Vectors - the magic " []" 14
1.4 Other Useful Functions 19
1.5 A Comment about R Snytax 20
1.6 Loops in R. 21
1.7 Exercises. 22
2 Qualitative Variables 25
Creating and using categorical variables in R 25
2.1 Introduction 25
2.2 The Function factor() 26
2.3 Visualizing Qualitative Variables. 28
2.4 How Factors are Stored in R 31
2.5 Changing Factor Levels 33
2.6 Hypothesis Testing for Factors 37
2.7 Exercises. 39
3 Quantitative Variables 41
Creating and using continuous variables in R 41
3.1 Introduction 41
3.2 Working with Numeric Data 41
3.3 Hypothesis Testing 42
3.4 Resistant measures of center and spread 43
3.5 Visualizing Quantitative Data 45
3.6 Converting Quantitative Data to Qualitative 51
3.7 Fitting and Modeling Distributions 53
3.8 Exercises. 55
4 Documenting Your Work 57
How not to forget what you were doing 57
4.1 Introduction 57
4.2 Background 58
4.3 An Example 59
4.4 Compilation from the console 60
4.5 Help! I'm Getting an Error! 61
4.6 Exercises. 63
5 Help in R 65
What to do when you need help 65
5.1 Introduction. 65
5.2 R's Help System 65
5.3 Help! I Don't Know Which Function to Use. 66
5.4 I Need More Help 67
5.5 Understanding Errors 68
5.6 Exercises 68
CONTENTS 5
6 Bivariate Data 71
Basic approaches to dealing with two variables 71
6.1 Introduction 71
6.2 Two Qualitative Variables 71
6.3 Two Quantitative Variables 78
6.4 Qualitative and Quantitative Variables 84
6.5 Exercises 87
7 The Data Frame 89
The R equivalent of the spreadsheet 89
7.1 Introduction 89
7.2 Data Frames 89
7.3 Attaching data 94
7.4 Changing Data Frames 95
7.5 Exercises 97
8 Importing Data 99
Getting your data into R 99
8.1 Introduction 99
8.2 Importing Data 99
8.3 An Example 100
8.4 An Easier Way (with Caveats!) 102
8.5 Importing Other Data Types 104
8.6 Some Typical Problems 104
8.7 Exercises 108
9 Manipulating Data 109
An introduction to data wrangling 109
9.1 Introduction 109
9.2 Summarizing Data 109
9.3 Reformatting Data from "Wide" to "Long" 116
9.4 Reshape 118
9.5 Merging Data Sets 121
9.6 More about Loops 122
9.7 Exercises 124
10 Working with multiple variables 125
Some basic tools for multivariate data 125
10.1 Introduction 125
10.2 Working with Multivariate Data 125
10.3 An Example 131
10.4 PCA 135
10.5 Clustering 142
10.6 Exercises 146
11 Linear Models I 147
Linear regression 147
11.1 Introduction 147
11.2 Violation of Assumptions and Transformation of Data 147
11.3 Hypothesis Testing 155
11.4 Predictions and Confidence Intervals from Regression Models 159
11.5 Exercises 162
12 Linear Models II 163
ANOVA 163
12.1 I. Introduction 163
12.2 One-way ANOVA 163
12.3 For violations of assumptions. 167
12.4 Multi-Way ANOVA - Understanding summary (lm()) 168
12.5 Multi-Way ANOVA - Calculating group means 171
12.6 Multi-Way ANOVA - Getting a handle on interactions 172
12.7 Multi-Way ANOVA - Tukey HSD and family-wise error 174
12.8 HSD.test - a useful tool for ANOVA 175
12.9 Exercises 176
CONTENTS 7
13 Linear Models III 179
More Linear Models 179
13.1 Introduction 179
13.2 Multiple Regression 179
13.3 ANCOVA 183
13.4 About Sums of Squares in R 186
13.5 Resistant Linear Models 187
13.6 Specifying Contrasts. 189
13.7 More Complex Designs 192
13.8 Exercises 195
14 Productivity Tools in \mathbf{R} 197
More advanced documentation and managing projects 197
14.1 Introduction 197
14.2 Getting stated with markdown 198
14.3 Managing projects 201
14.4 Using R and LaTeX via Knitr 202
14.5 Exercises 202
15 Visualizing Data I 205
Enhancing scatter plots 205
15.1 Introduction 205
15.2 Basic Scatter Plots 206
15.3 Multi-Panel Plots I: Layout 210
15.4 Adding a Secondary y-axis 215
15.5 Summary 217
15.6 Exercises 217
16 Visualizing Data II 219
Errorbars and polygons 219
16.1 Introduction 219
16.2 Scatter Plot with Error Bars 219
16.3 Scatter Plots with Confidence Ribbons 224
16.4 Error Bars in 2 Dimensions 228
16.5 Reversing Axes 230
16.6 Summary 232
16.7 Fun with R graphics 232
16.8 Exercises 234
17 Visualizing Data III 235
Boxplots and barplots 235
17.1 Introduction 235
17.2 Boxplots 235
17.3 Barplots 242
17.4 Summary 246
17.5 Exercises 247
18 Mixed Effects Models 249
More advanced documentation and managing projects 249
18.1 Introduction 249
18.2 A basic example 250
18.3 Split-plots 258
18.4 Summary 262
18.5 Exercises 262
19 Fitting Other Models 265
Non-linear least squared models, logistic regession 265
19.1 Introduction 265
19.2 Logistic regression 265
19.3 Fitting other non-linear models 274
19.4 Exercises 278
20 Writing functions 281
Customizing R with functions and packages 281
20.1 Introduction 281
20.2 Creating a function 281
20.3 Creating a package 288
20.4 Exercises 290

Introduction

R is the open-source statistical language that seems poised to "take over the world" of statistics and data science. R is really more than a statistical package - it is a language or an environment designed to potentiate statistical analysis and production of high quality graphics (for more on information see www.rproject.org/about.html).
Originally developed by two statisticians at the University of Auckland as a dialect of the S statistical language, since 1997 the development of R has been overseen by a core team of some 20 professional statisticians (for more on information see www.r-project.org/contributors.html).

Many new users find that R is initially hard to use. One needs to learn to write code, and there are no (or few) menu tools to make the process easier. In fact, when a grad school friend first excitedly described R to me in 2004 my first thought was "Why would I want to learn that?". I dabbled in R several times following that, but was put off by the difficulties I encountered. I finally began using R in earnest as an environment for some simulation modeling, and then later for statistical and graphical work.

These notes were developed for a short introduction to R for students who already understand basic statistical theory and methods, so the focus is mostly on R itself. Much of the inspiration for these notes comes from "SimpleR" ${ }^{1}$ by John Verzani. ("SimpleR" was written to teach both R and introductory statistics together, but I successfully used it as the basis for an introduction to R for several years). As my course has evolved, I felt the need to develop my own materials, but the debt to John Verzani is substantial - many of the good bits in what follows are probably inspired by his work, particularly the didactic style, and the errors are certainly all mine.
A note about formatting in this document: To keep things clear, in this document, R output is shown in a black console (fixed width) font preceded by "\#", like this:

1"SimpleR" is also still available at http://www.math.csi.cuny.edu/Statistics/R/simpleR/.
while R code is shown in a console font in colored text without the preceding \#, like this:
summary $(c(23,45,67,46,57,23,83,59,12,64))$

Where we mention R functions or arguments by name, they will appear in the console font, and the names of functions will be followed by parentheses, e.g. mean().

You should be able to download these notes in a Zip file with associated folders. Unzip this to a convenient location and you will have an directory (folder) called "EssentialR". These notes assume that you are using the "EssentialR" directory as the working directory (see Ch 5), and examples point to files in the "Data" directory in "EssentialR".

Getting \mathbf{R}

You can download R from CRAN (http://cran.r-project.org/). I also recommend that you then install the excellent RStudio IDE (http://www.rstudio. com/ide/download/) - while not strictly necessary, it makes working in R so much easier that it is worth using.

Other Resources

For an introduction to statistics using R (or a basic R reference), I recommend the following books:

Using R for Introductory Statistics. 2004. John Verzani. Chapman \& Hall/CRC. (an extension of SimpleR)
Statistics: An introduction using R. 2005. Michael J. Crawley. Wiley and Sons. (This was useful enough to me when I began learning R that I bought a copy.).
Quick-R (http://www.statmethods.net) is a nice online overview of basic R functions and methods. Useful reference.
Gardner's own (http://www.gardenersown.co.uk/Education/Lectures/R): a nice look at using R for analysis.

R Wikibook (http://en.wikibooks.org/wiki/Statistical_Analysis:_an_ Introduction_using_R): an online book for a course like this.

IcebreakeR (http://cran.r-project.org/doc/contrib/Robinson-icebreaker.pdf): another PDF book for a course like this.
Also see the "Contributed Documentation" tab at CRAN (http://cran.r-project. org/doc/contrib) for links to more resources.
The citation for R (type citation() to get it) is as follows:

R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

These notes were written in Markdown, and complied using the excellent R package "bookdown" by Yihui Xie - for more information see: https://bookdown.org.

Of course, I would be remiss not to acknowledge the R core team and the other members of the R user community whose efforts have combined to make R such a powerful tool.

Figure 1: CC image
Eric Nord, Greenville IL
Dr.Eric.Nord@gmail.com
April 1, 2023

Chapter 1

Basics

The console, the editor, and basic syntax in R

1.1 The Terminal

One of the things new users find strange about R is that all you have to interact with is a terminal (aka console) and (if you are using a GUI or IDE) an editor. This is very different from Excel or Minitab or similar applications. As we'll see, this has some advantages, but ease of learning might not be one of them. In the meantime, you might find it helpful to imagine that your workspace is a bit like a spreadsheet, and the terminal a bit like the "formula bar", where you have to type input to the spreadsheet, or see what is in the spreadsheet.

The R "terminal", or "console" is where commands can be entered and results are displayed. When you start R on your computer, it looks something like this:

```
R version 4.0.5 (2021-03-31) -- "Shake and Throw"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
    Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
```

```
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
[R.app GUI 1.74 (7950) x86_64-apple-darwin17.0]
[Workspace restored from /Users/enord/.RData]
[History restored from /Users/enord/.Rapp.history]
>
```

Notice the ">" at the end of all this? ">" is the R prompt - it means R is waiting for you to do something. If you are using RStudio, the terminal is on the left or lower left pane. Since R is waiting for us, let's try some things. Type (or copy \& paste) the following lines (one at a time) into the console. When you press "Enter" you tell R to evaluate each expression.

```
2+2
```

\# [1] 4
$4 * 5$
\# [1] 20
$6^{\wedge} 2$
\# [1] 36
$3+5 * 2$
\# [1] 13
$(3+5) * 2$
\# [1] 16

```
# 2+2
```

Notice a couple of things:

1. spaces don't matter $-2+2$ is the same as $2+2$
2. the standard operators $+,-,{ }^{*}, /$, and ${ }^{\wedge}$ all function as expected
3. standard order of operations is respected, and can be altered using parentheses
4. all answers are preceded by [1] - we'll see why in a bit
5. an expression preceded by "\#" is not evaluated - "\#" is the comment character in R. Anything between a "\#" and the end of a line is treated as a comment and is not evaluated.

A common place new useRs get confused is when the console displays a + rather than the prompt >. This simply means that the last expression entered was incomplete. Try entering $2+$ and see what happens. You need to complete the addition before you get a prompt again. You will almost certainly experience this later, as unmatched (will lead to a + .
Let's create a variable (also called an object in R), "a" and give it a value of 5 .

$$
\mathrm{a}=5 \quad \#=
$$

Here we used the $=$ to assign the value 5 to a. Those of you with some programming experience may wonder about data types. R can handle many types of data (including numerical, character, logical, factors, matrices, arrays, and lists), and we'll discuss them in more detail later. Now we have created the object a, we can see what it is:
a
\# [1] 5

Notice that the value of a, 5 , is returned. We can also calculate with an object:

```
a * 2
```

\# [1] 10
a
\# [1] 5
$\mathrm{a}=\mathrm{a} * 2$

Notice that when we tell $\mathrm{R} a * 2$ we get the result, but then when we type a we can see a is not changed. To change an object in R we must assign it a new value. What do you think we will get if we type a now? What if we type A ? Remember that R is case sensitive! (We've just highlighted two of more common errors I see and make with R: 1. forgetting to assign some output that I intended to save to an object and 2. case errors.)
A note about $=$ and $<-$. Assignment in R can be done using $=$ or using the assignment operator: <- or ->. The assignment operator (<-) is directional, and the leftward assign is far more common than the right. In the case of $=$ the "name" is assumed to be on the left - i.e. = is equivalent to <-. In these notes I generally use <-, so that = is reserved for passing arguments to functions. (The keyboard shortcut for <- in RStudio is "alt+-".)

When you create an object in R it exists in your environment or workspace. You can see what is in your workspace by typing ls(), which is short for "list". If you are using RStudio, you can also go to the "Environment" tab which is usually in the upper right pane.

You can remove things from your workspace using rm() - for example rm(a) will remove a from your workspace. Try ls() now. If you type a you'll get an error: Error: object 'a' not found. This makes sense, since we've removed (deleted) a. ${ }^{1}$
A note about the console and the editor. In RStudio you can go to the File menu and choose New $>$ R script and new pane will open above your console. This is your "Editor", and you can actually have multiple files open here (as tabs). An R script file contains R code and comments (see above re: comments), but not output (though you can paste output into a script file, but you should put it behind comments so R doesn't try to run it). You can easily run code from the editor. Open an new script file and type \# editor demo. Now press Ctrl+Enter, and R will run that command (since it is a comment, it will just be written to the console). Now type $\mathrm{a} \backslash * 4$ and press Ctrl+Enter (Mac: CMD+Return).
Scripts can easily be saved ${ }^{2}$ for future reference or to continue your work later. The console can't easily be saved, but it contains the output from your R code. (There is a logic to this - if you have all the code saved, the console output is easily recreated - just run all the commands.) In the console the up arrow will

[^0]retrieve previous commands, which can save you a fair amount of typing (often it is faster to edit a previous command than to type it over).

1.2 Working with Vectors

One of the ways R makes working with data easy is that R natively handles vectors, meaning that (almost) anything you can do to a value in R you can do to a vector of values. As we'll see, this becomes very useful.

Imagine that I count the number of SMS text messages I receive each day for a week and enter them in R as sms:
sms <- c $(0,1,2,0,0,0,1)$

Notice:

1. I get very few SMS messages - I like it this way!
2. We use a new function (command) here -c- it concatenates values together into a vector.
3. The function c is followed by parentheses (). All functions in R are followed by parentheses that contain the arguments to the function, like this: function(argument1, argument2).
4. Within the parentheses the different values are separated by commas (,) - this is also standard in R - the arguments to a function are separated by commas, and here the values are the arguments to the function $c()$.

R can do many things easily with vectors: mathematical operations, sorting, and sub-setting.

```
sms + 5
# [1] 5 6 7 5 5 5 6
sms * 5
# [1] 0 5 5 10}0
sms/2
```

\# [1] $0.00 .51 .00 .0 \quad 0.0 \quad 0.0 \quad 0.5$

```
sort(sms)
```

\# [1] 00000112

Notice that if you type sms the original data has not been changed - to change the original data you always need to assign the result ${ }^{3}$. This is design principle in R - a function should never change anything in your workspace; objects in the workspace are only changed by assignment. If you want a function to change an object you must assign the result of the function to that object.

1.3 Sub-setting Vectors - the magic "[]"

It is often the case when working with data that we want to select only specific parts of the data (think "filtering" in Excel). In R we do this by "sub-setting" vectors. In R the square brackets [] are used for indexing vectors, matrices, data tables, and arrays. Here we'll just consider vectors. The more you gain familiarity with R, the more you learn the power of the [].

```
sms [3]
# [1] 2
sms [2:4]
# [1] 1 2 0
sms [-3]
# [1] 0 1 0 0 0 1
sms[-(2:3)]
# [1] 0 0 0 0 1
sms[-c(2, 3, 7)]
# [1] 0 0 0 0
```

[^1]Here we've told R to give us the 3 rd element of sms and the 2 nd-4th elements of sms - the : symbol means "through" - you can test this by typing 5:9:

$$
5: 9
$$

\# [1] 56789

A minus sign "-" in the [], - means "all elements except", and this can be used with a range $(2: 3)$ or a more complex list $(c(2,3,7))$, though it will be necessary to add parentheses as we have done here. This is because $-2: 3$ returns $\begin{array}{llllll}-2 & -1 & 0 & 1 & 2 & 3\end{array}$, and the -2 th element of a vector does not make sense!

In fact, a more general and useful approach is logical extraction - selecting parts of a vector based on some logical test. For example, if we wanted to know the average (mean) number of sms messages I received on days that I received any sms messages, we could do this easily with logical extraction. sms>0 applies the logical test >0 to sms and returns a logical vector (TRUE or FALSE for each element of the vector) of the result. This can be used to specify which elements of the vector we want:

```
sms > 0
# [1] FALSE TRUE TRUE FALSE FALSE FALSE TRUE
```

```
sms[sms > 0]
```

```
sms[sms > 0]
```

\# [1] $12 \begin{array}{lll}1\end{array}$

It is worth noting that R treats logical values as FALSE $=0$ and TRUE $=1$. Thus sum (sms) will give us the total number of sms messages, but sum (sms>0) will give us the number of TRUE values in the logical vector created by the logical test $s m s>0$. This is equivalent to the number of days where I received any sms messages.

```
sum(sms > 0)
```

\# [1] 3

We can also use the function which() for logical extraction, and we can then use the function mean() to get the average number of sms messages on days where I received messages:

```
which(sms > 0)
```

\# [1] 237
sms[which (sms > 0)]
\# [1] 121

```
mean(sms[which(sms > 0)])
```

\# [1] 1.333333

Notice:

1. The function which() returns a vector of indices rather than a logical vector.
2. The final line here shows something that is very typical in R - we used one function, which() as an argument to another function, mean(). This type of programming can be confusing as there are square brackets and parentheses all over the place. I find that I need to build it up step by step, as you can see we've done here.
3. It is a good practice to develop the skill of reading such a statement from the inside out rather than left to right. mean (sms [which(sms>0)]) could be read as "use only the values of sms that are greater than 0 and take the mean". 4. A small command like this already has 3 nested sets of parentheses and brackets - it is really easy to drop one by mistake ${ }^{4}$. If you entered mean (sms [which (sms>0)] (omitting the closing ")") R will notice that your command is incomplete, and instead of a result and a new line with the prompt $(>)$ it will give no answer (as the command is not complete) and will give $\mathrm{a}+$ - this just means that R is waiting for the command to be complete.

You can also use the indexing operator to change part of vector:

```
sms
```

\# [1] 00120001

[^2]```
sms[1] <- 1
sms
```



This approach could be combined with logical extraction; for example if you wanted to replace all the zero values with 1: sms $[$ which (sms==0) ]<-1. Notice that when making a logical test $R$ expects the double equal sign $==$; this is to differentiate between the assignment or argument use of the equal sign $=$ and the logical use $==$. This is a common source of errors.

Recall the mysterious [1] that is returned with our results? This just means the first element of the result is shown. If your vector is long enough to go to a second (or third) line, each line will begin showing the element number that begins the line:

$$
1: 50
$$

```
[1] 1 1.2 2 3 4
[18] 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
[35] 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
```

Notice that each line begins with the index within square brackets ([]) for that element.

It is also worth noting that you can use one variable to index another. First we'll make some vectors.

```
x <- c("a", "b", "c", "d", "e", "f", "g", "h", "i")
y<- 21:30
z<- c(2, 4, 6)
```

Now we can try various uses of []:

```
x [y]
```

\# [1] NA NA NA NA NA NA NA NA NA NA

What is going on here? What does the NA mean?

```
x[z]
```

\# [1] "b" "d" "f"

The $z$-th element of $x$.
$y[z]$
\# [1] 222426
$z[y]$
\# [1] NA NA NA NA NA NA NA NA NA NA

The second line here gives many NA's since z doesn't have enough elements to match some values of $y$.
$x[\operatorname{rev}(z)]$
\# [1] "f" "d" "b"
$y[x]$
\# [1] NA NA NA NA NA NA NA NA NA
$\operatorname{rev}()$ just reverses its argument. The x -th elements of y fails because x can't be "coerced"" to numeric.

$$
\mathrm{y} * \mathrm{z}
$$

\# Warning in $y * z$ : longer object length is not a multiple
\# of shorter object length
\# [1] $\quad 42 \quad 88 \quad 138 \quad 48 \quad 100 \quad 156$

This warning is important. One might naively assume that $R$ won't do the element-wise addition or multiplication of two vectors of different lengths, but it does by recycling the shorter vector as necessary, with a warning if the length of longer one is not a multiple of the length of the shorter. Pay attention to your vector lengths!
Earlier we learned how we can change elements of a vector using the indexing operator. (e.g. sms [5]<-3. There are other tools in R that allow us to edit data. The most useful in RStudio is edit(). For example, edit (sms) will bring up a small edit window in R studio. If you change the first element from 1 back to zero and press save, the console will show the edited value of sms.

However if you type sms again, you'll find that the original data hasn't been altered. As we said before, if you want to change values in R you have to assign the result of you change ${ }^{5}$-so sms<-edit (sms) would actually save the changes. Of course, you might want to make a copy of the data and change that - simple, just assign the result of edit to another name: sms.2<-edit(sms).

The R functions de() and data.entry() are similar to edit(), but aren't supported in RStudio, so we'll skip them here. It is worth noting that these functions (edit (), de(), and data.entry ()) are interactive - that is they require user input outside of the terminal. There are 2 important things to know about interactive functions in R :

1. When you invoke an interactive function, $R$ waits for you to be done with it before R will continue. In RStudio you will see a small red "stop sign" icon just above the console pane. This means $R$ is waiting for you do do something. (The first time this happened to me I thought R had frozen and I forced R to quit and restart).
2. When you use an interactive function any changes you make to data this way are not recorded in your code - if you make your changes to your data via the code you write, then saving your code preserves a record of what you have done. If you are like me, and have ever found yourself looking at a spreadsheet that you (or someone else) made some time ago, and wondering "what was happening here?", you will see the benefit of having everything you do recorded in your code. It increases the transparency of your analysis. ${ }^{6}$.

### 1.4 Other Useful Functions

Some other useful functions for working with vectors of data are:

[^3]| Function | Description |
| ---: | :--- |
| $\operatorname{sd}()$ | standard deviation |
| median() | median |
| $\max ()$ | maximum |
| $\min ()$ | minimum |
| range() | maximum and minimum |
| length() | number of elements of a vector |
| cummin() | cumulative min (or max cummax()) |
| $\operatorname{diff()}$ | differences between successive elements of a vector |

A couple of additional hints that you'll find helpful:

1. If you type some function in $R$ and press Return, but $R$ gives you + instead of the answer, it means you have not completed something - most often this means a parenthesis has not been closed.
2. Related to 1.: in RStudio when you type "(" the ")" is automatically placed - this is to help you keep track of your "()"s. Also when your cursor is beside a "(" the matching ")" is highlighted, and vice-versa.
3. You will occasionally see a semicolon (;) used - this simply allows two functions to be submitted on one line. This is generally rather rare, since $R$ functions tend to be longer rather than shorter when doing anything complex. 4. The comment character in R is the hash (\#) - anything between \# and the end of the line is treated as a comment and is not evaluated. Adding comments in your R code is a good idea - it helps you remember where you are and what you are doing (transparency!)

### 1.5 A Comment about R Snytax

We can extend the " R as a language" idea introduced in the syllabus in thinking about R syntax. The generic form of an sentence is noun+verb. In R that would be rendered as verb(noun) - in R the function is the action, or the verb. So we can take a sentence like Bring me the sandwich and render it in R as something like this: bring(to=me,what=sandwich). Of course sometimes sentences (and $R$ expressions) are more complicated, such as: Bring me the sandwich that $I$ left on the counter which we might render in $R$ as something like this: bring(to=me, what=left(what=sandwich, where="on the counter")) ${ }^{7}$.

We can reverse this by starting with an R expression, such as mean (sms [which] (sms > 0)]) (used above). This would translate as Average the values of "sms" which are greater than zero. This is kind of a messy example because the second verb ("is", in the comparison "are greater than") may not be immediately obvious.

[^4]
### 1.6 Loops in R.

One of the great advantages of R over a point-and-click type analysis tool is that it is so easy to automate repeated tasks. Because R typically handles vectors quite nicely, many (most?) loops can be avoided. For example, there is no need to write a loop to add a two vectors. In addition, code that uses vectorization is usually much faster than code that uses loops. But sometimes a loop is useful, so we'll consider them here.

Loops are initiated with the function for(), with an index a the argument. The loop is usually enclosed in curly braces " $\}$ ", but if it all fits on one line it doesn't need the braces.

```
for (i in 1:27) {
 cat(letters[i])
}
abcdefghijklmnopqrstuvwxyzNA
for (i in 1:10) {
 print(paste(i, "squared =", i^2))
}
[1] "1 squared = 1"
[1] "2 squared = 4"
[1] "3 squared = 9"
[1] "4 squared = 16"
[1] "5 squared = 25"
[1] "6 squared = 36"
[1] "7 squared = 49"
[1] "8 squared = 64"
[1] "9 squared = 81"
[1] "10 squared = 100"
for (i in sample(x = 1:26, size = 14)) cat(LETTERS[i])
QJNVUTMZLPXBRF
```

These examples are ridiculously trivial, because I want to emphasize the loop syntax, which could be rendered as: for (every value in the index) \{do something with that value\}.
Notice - these loops could all be avoided by passing vectors rather than single values to functions - the following code produces (mostly) the same results (not run here, but you should run it to confirm).

```
paste(letters[1:27], collapse = "") # first example,
see what happens if paste() is not used
paste(1:10, "squared =", (1:10)^2) # second example
sample(LETTERS, size = 14) # third example
```

Also note that letters and LETTERS are built in. Also note (in the following) that the index does not need to be a number - it can be an object or something that evaluates to a number. Lastly, note that values aren't written to the console when a loop is run unless we specify that they should be using a function such as cat() or print().

```
x <- c("Most", "loops", "in", "R", "can", "be", "avoided")
for (i in x) {
 cat(paste(i, "!"))
}
```

\# Most !loops !in ! R !can !be !avoided !

A couple of final thoughts on loops: 1) This section is probably of more interest to readers who have had some programming experience in the past.
2) The apply () family of functions (See Chapter 10) can be used in place of many loops. We won't explore them now.
3) Some useRs are "hardliners" about avoiding loops and would probably argue that I should not even include this material in chapter 1. I don't view loops as inherently bad, but I try to avoid them when I can in the spirit of "how can I learn to take advantage of more of R's built in tool set". Vectorized R code is usually substantially faster, so there is some advantage to avoiding loops.

### 1.7 Exercises.

1) Enter the following data in $R$ and give it a name (P1 for example):
$23,45,67,46,57,23,83,59,12,64$
a) What is the maximum value? b) What is the minimum value? c) What is the mean value?
2) Oh no! The next to last (9th) value was mistyped - it should be 42 .
a) Change the 12 to 42. b) How does this change the mean? c) How many values are greater than 40 ? d) What is the mean of values over 40? Hint: how do you see the 9th element of the vector P1?
3) Using the data from problem 2 (after the 9 th value was changed) find:
a) the sum of P1
b) the mean (using the sum and length (P1))
c) the $\log$ (base10) of P1 - use $\log$ (base=10)
d) the difference between each element of P1 and the mean of P1 (Note: you should not need a loop for this problem)
4) If we have two vectors, $\mathrm{a}<-11: 20$ and $\mathrm{b}<-\mathrm{c}(2,4,6,8)$ predict (without running the code) the outcome of the following (Write out your predictions as comments in your HW. After you make your predictions, you can check yourself by running the code). Were you correct? a) a*2
b) $\mathrm{a}[\mathrm{b}]$
c) $b[a]$
d) $c(a, b)$
e) $a+b$

## Chapter 2

## Qualitative Variables

## Creating and using categorical variables in $R$

### 2.1 Introduction

In the last chapter we saw how we can work with vectors in R. Data that we work with in R is generally stored as vectors (though these vectors are usually part of a data frame, which we'll discuss in the next chapter). Of course there are several types of data that we might need to work with - minimally we need qualitative data (categorical data - factors in R -speak) and quantitative data (continuous or numerical data - numeric in R -speak), but strings (character in R ) are often useful also. Today we'll consider the first two of these data types, and learn how to work with them in R .

Since there are different types of data, it is very important to know:
A. What type of data you have (by this I mean what it represents).

As our focus here is R, I won't dwell on this except to say that it is worth taking time to be clear about this when designing your data. For example, if four replicates are labelled " $1,2,3,4$ ", then R is likely to treat replicate is a numerical variable. If they are labelled "A, B, C, D", or "I, II, III, IV", this can be avoided.
B. What R thinks the data is (or how it is encoded in R ).

The most common data types for vectors in R are: "logical", "integer", "double", and "character". There are several other types that you may never encounter and several types that apply to more complex structures that we'll explore later.

There are a couple of ways to find out how R is storing data. The function str() ("structure") will give you the basic data type. The function summary()
gives summary statistics for numeric variables, but number of levels for factors. This works well because it also lets you quickly see if you have miss-coded data (e.g typos like "IIi" in place of "III") or extreme outliers.
C. How to ensure that the answers to A. and B. are the same!

### 2.2 The Function factor().

Qualitative data, or categorical data is stored in R as factors. We can use the function factor() to coerce (convert) a vector to a factor, as demonstrated here:

```
cols <- c("Blue", "Blue", "Red", "Red", "Blue", "Yellow",
 "Green")
summary(cols)
Length Class Mode
7 character character
cols[2]
[1] "Blue"
cols <- factor(cols)
cols [2]
[1] Blue
Levels: Blue Green Red Yellow
```

Notice that this factor was created as a character variable - the elements still have quotes around them. After we convert it to a factor, even returning one element (cols[2]) we can see that there are no quotes and we get the levels reported. The structure ( $\operatorname{str}(\operatorname{cols})$ ) reports that it is factor, and shows us the numeric representation of it (we'll discuss this more in a bit). The summary (summary (cols)) shows us the frequency for (some of) the levels ${ }^{1}$. Now that we have cols as a factor, we can investigate its properties. The function levels() shows us all the levels for a factor.

[^5]```
str(cols)
# Factor w/ 4 levels "Blue","Green",..: 1 1 3 3 1 4 2
summary(cols)
\begin{tabular}{lrrrr} 
\# & Blue & Green & Red Yellow \\
\(\#\) & 3 & 1 & 2 & 1
\end{tabular}
levels(cols)
# [1] "Blue" "Green" "Red" "Yellow"
```

We can use the function table() to see a frequency table for our factor. Note: We can use table() on character or numeric vectors also - table() will coerce its argument(s) to factor if possible (though of course it doesn't store the factor - objects are only stored if you explicitly call for them to be stored).

```
table(cols)
```

```
# cols
# Blue 
b <- table(cols)
b [3]
```

\# Red
\# 2
b[3] * 4
\# Red
\# 8

Notice that the frequency table created by table() is itself an R object, meaning that we can assign it to another name (b in this example), and we can access parts of it in the normal way, and use it in further calculations. Using functions to return or store (save) objects is a very common task in R, as you will see, and many functions return objects.

2.3 Visualizing Qualitative Variables.

If we want a graphical summary of a factor, we can make a barplot (barplot()). However, we need to use table() with barplot(), since barplot() requires the values it will plot (its height argument) in a numeric form (i.e. a vector or a matrix; see ?barplot for more detail).

```
barplot(table(cols))
```

plot(cols)

barplot(b/length(cols), col = c("blue", "green", "red",
\leftrightarrow "yellow"),
ylab = "Proportion")

Note that plot (cols) gives a barplot in the second plot - this is because the data is categorical. In the third plot we used b (recall that earlier we assigned table(cols) to b) either way works.

```
barplot(b/length(cols), col = c("blue", "green", "red",
\hookrightarrow "yellow"),
    ylab = "Proportion")
barplot(table(cols)/length(cols), col = levels(cols), ylab =
@ "Proportion")
```


The first plot here demonstrates how we can easily add color to plots and that we can carry out calculations within the call to barplot() (e.g. to calculate proportions). We can also specify the y-axis label (the argument is ylab). The second plot demonstrates how we can use the output of levels() to specify our colors. This only makes sense in a minority of cases, but it is an example of nesting functions - table(), length(), and levels() are all used to supply arguments to barplot().

Notice that the col argument to barplot() is optional - barplot works fine if we don't specify col, but we have the option to do so if need be. This is a common feature of R functions - minimal arguments are required, but there are often many optional arguments, which often have well chosen default values.

We can also convert a factor to a logical vector (by using a logical test) should we need to for sub-setting:

```
cols == "Red"
```


\# [1] FALSE FALSE TRUE TRUE FALSE FALSE FALSE

We can also create a pie chart quite easily (though see ?pie for why this might not be a good idea).

```
pie(table(cols))
pie(b, col = c("blue", "green", "red", "yellow"))
```


Another example, this time with a numerically coded factor.

```
a <- factor(scan(text = "2 4 4 3 3 2 1 1 1 2 2 3 4 2 | 3 3 4 1 3 2 1 4
    3 2 4"))
# scan(text='some text string with spaces separating
# value')
table(a)
# a
# 1 2 3 4
#4675
levels(a) <- c("<14", "15-24", "25-34", ">35")
table(a)
# a 
```

```
barplot(table(a))
```


First notice that we introduce the function scan() here - when entering a longer list like this it may be easier than using c(), as commas don't need to be entered. Second note that we can use the function levels() to set levels as well as to return them (a number of other R functions display this dual utility as well). For a longer factor variable, it might be faster to enter it this way than by repeatedly entering all the factor levels ${ }^{2}$.

2.4 How Factors are Stored in R

R stores factors as a list of levels and an integer vector representing the level of each element of the factor. So our factor a, with values $1,1,4,5$ has three levels: 145.

```
a <- c(1, 1, 4, 5)
str (a)
```

\# num [1:4] 1 1 145

[^6]```
(a <- as.factor(a))
[1] 1 1 4 5
Levels: 1 4 5
str(a)
```

\# Factor w/ 3 levels "1","4","5": 1123
levels(a)
\# [1] "1" "4" "5"

Notice that $\operatorname{str}(\mathrm{a})$ shows that the original values have been replaced by the level numbers, which are $1,2,3$. This can create an unwelcome surprise if you are trying to use values from a factor variable in a calculation! For this reason, it is probably best to avoid using the integer values from a factor in calculations. Note that while factors levels are stored as a vector of numbers, it does not make sense to treat these as numbers - in this example the level " 4 " is represented by the value " 2 ". If our levels were "blue","red","green", it clearly makes no sense to assume that because "blue" is level 1, and "green" is level 2 that "green" = twice "blue".
Note that in the third line we put parentheses around the assignment - this is equivalent to a<-as.factor(a); a - it both carries out the assignment and shows us the new value of a. This is occasionally useful. The function levels() returns the levels for a factor (what do you think it does for a non-factor variable?)
We already saw how we can use factor() and as.factor() will convert character or numeric data to factor data, and as.numeric() will (sort of) do the opposite.

```
as.numeric(a)
```

\# [1] 11223

As you can see in this case we don't get the original values, we get the integer representation. We can also see this in the output from str(a). If necessary, this can be solved by first converting to character and then to numeric ${ }^{3}$ as.numeric(as.character(a)) returns: 1, 1, 4, 5 .

[^7]```
as.numeric(as.character(a))
```

\# [1] $1 \begin{array}{llll}1 & 1 & 4 & 5\end{array}$

Since factor levels are characters, they can be a mix of alphabetic and numeric characters, but that will clearly cause problems if we want to coerce the factor to a numeric vector.

```
(b <- c("-.1", " 2.7 ", "B"))
# [1] "-.1" " 2.7 " "B"
str (b)
# chr [1:3] "-.1" " 2.7 " "B"
as.numeric(b)
# Warning: NAs introduced by coercion
# [1] -0.1 2.7 NA
```

Here we entered the values with quotes, which created a character variable, (as shown by the chr returned by str()). When we convert the vector to numeric, the non-numeric value ("B"), can't be coerced to a number, so it is replaced by NA, thus the warning NAs introduced by coercion. This warning will occasionally show up when a function coerces one of its arguments.

2.5 Changing Factor Levels

Occasionally we need to change the levels of a factor - either to collapse groups together or to correct typos in the data.

```
cols <- factor(c("Blue", "Blue", "Red", "Red", "Bleu", "Yellow",
    "Green"))
levels(cols)
```

\# [1] "Bleu" "Blue" "Green" "Red" "Yellow"

Here we have mistyped "Blue" as "Bleu" (I do this kind of thing all the time). We can use the function levels () to set levels as well as to query them. The key is that since there are currently 5 levels, we must specify 5 levels that correspond to the 5 current levels, but we don't have to specify unique levels.

```
levels(cols) <- c("B", "B", "G", "R", "Y")
levels(cols)
# [1] "B" "G" "R" "Y"
```

Now we have only four levels - by assigning "B" to both "Blue" and "Bleu" we collapsed them together. This is not reversible - if we wanted to get "Bleu" back, we'd have to reload the data. This is where making a copy of the vector before you start tweaking it may be a good idea (though if you are writing all your code in an R script, it is quite easy to get back to where you started - just run all the commands again).

Note that the new levels can be the same as the old levels - in the example above I avoided that just for clarity.

```
cols <- factor(c("Blue", "Blue", "Red", "Red", "Bleu", "Yellow",
    "Green"))
levels(cols) <- c("Blue", "Blue", "Green", "Red", "Yellow")
levels(cols)
# [1] "Blue" "Green" "Red" "Yellow"
```

In fact we can supply the same levels in a different order, though that probably doesn't make much sense.

```
cols <- factor(c("Blue", "Blue", "Red", "Red", "Blue", "Yellow",
    "Green"))
levels(cols)
# [1] "Blue" "Green" "Red" "Yellow"
levels(cols) <- c("Yellow", "Blue", "Green", "Red")
levels(cols)
# [1] "Yellow" "Blue" "Green" "Red"
```

Since there are four levels, we must supply a vector of four levels, but they don't need to all be different:

Note: We could also use the function replace() to change factor levels, but to do this we first have to convert the factor to character using as.character(), so this method is not generally as useful.

It is worth noting that once a level is created for a factor, the level persists even if the corresponding data is removed.

```
cols
# [1] Yellow Yellow Green Green Yellow Red Blue
# Levels: Yellow Blue Green Red
cols[-6]
```

\# [1] Yellow Yellow Green Green Yellow Blue
\# Levels: Yellow Blue Green Red

Notice the level Red is still present, even though there are no values with that level. This is occasionally annoying. The function droplevels () can be used to drop unused factor levels you can check this by running droplevels (cols [-6]).

Occasionally we want to impose our own order on a factor rather than accept the default (alphanumeric) order given by R. For example, a factor with levels "Low", "Medium" and "High" would be default ordered as "High", "Low", "Medium", which doesn't make sense. We can use the use the levels argument of factor() to set the orders as we'd like them to be.

```
x <- factor(c("L", "M", "H"))
y <- factor(x, levels = c("L", "M", "H"))
x
```

\# [1] L M H
\# Levels: H L M
y
\# [1] L M H
\# Levels: L M H

Notice here that the content of x and y are the same ("L", "M", "H"), when returned by R. However, if you run $\operatorname{str}(x)$; $\operatorname{str}(y)$, you will see that the underlying encoding is different because the order of levels is different.

In some cases, your interest in the order of factor levels may be for convenience, and not based on an intrinsic order (e.g. ordering categories based on total frequency, such as might be utilized in a bar plot, or ordering universities on the basis of the number of R users). The method presented above is appropriate for these situations.

In other cases, there is an intrinsic order to the levels (e.g. "Low", "Med", "High"; "Never", "Sometimes", "Always"). In such instances it may be useful to create an ordered factor.

```
z <- factor(x, levels = c("L", "M", "H"), ordered = TRUE)
Z
```

\# [1] L M H
\# Levels: L < M < H

Notice that the levels are listed from lowest to highest, and are shown with the "<" indicating the order. We can also see this when we call str() on an ordered factor. Also notice that when we create the ordered factor z we begin with x that already has the levels "L", "M", "H". If x had other levels we'd need to set the correct levels first via levels(), or use the argument labels for factor().

```
str(y)
```

\# Factor w/ 3 levels "L","M","H": 123

```
str(z)
```

```
# Ord.factor w/ 3 levels "L"<"M"<"H": 1 2 3
```

The main advantage of an ordered factor is the ability to perform logical tests that depend on ordering on the factor.

```
y > "L"
# Warning in Ops.factor(y, "L"): '>' not meaningful for
# factors
```

\# [1] NA NA NA
z > "L"
\# [1] FALSE TRUE TRUE
sum $(z<=" M ")$ \# '<=' is 'less than or equal to'
\# [1] 2

2.6 Hypothesis Testing for Factors

We may want to test hypotheses about a qualitative variable. For example, if we roll a die 50 times and get " 6 " 12 times how likely is it that the die is fair? (This really is a factor - it just has numeric levels.)

We can use the proportion test in R (prop.test()) to compare an observed frequency against a hypothesized frequency and calculate a p-value for the difference. Here our observed frequency is 12 out of 50 , and the theoretical probability is $1 / 6$. Our alternative hypothesis is that the probability is greater than $1 / 6$.

```
prop.test(x = 12, n = 50, p = 1/6, alt = "greater")
#
# 1-sample proportions test with continuity
# correction
#
# data: 12 out of 50, null probability 1/6
# X-squared = 1.444, df = 1, p-value = 0.1147
# alternative hypothesis: true p is greater than 0.1666667
# 95 percent confidence interval:
# 0.1475106 1.0000000
# sample estimates:
# p
# 0.24
```

The p-value here is 0.115 , so we don't have very strong evidence of an unfair die.

EXTRA: Simulating a hypothesis test for a qualitative variable

Another way to approach this question is to simulate the problem in R. The function sample() will randomly choose values, so sample(1:6) would be like rolling a fair die, and sample ($1: 6$, size $=50$, replace=TRUE) like rolling the die 50 times. Adding the logical test $==6$ asks how many 6 's come up, and calling sum () on the logical test adds up the number of TRUEs (recall from Chapter 1 that logical values can be interpreted as 0 or 1).

```
sample(x = 1:6, size = 50, replace = TRUE) # rolling a die 50
times
```

\# [1] $11 \begin{array}{llllllllllllllllllllllll} & 2 & 1 & 6 & 2 & 2 & 5 & 4 & 2 & 1 & 4 & 6 & 1 & 3 & 3 & 6 & 1 & 6 & 6 & 2 & 1 & 1 & 6 & 2\end{array}$

sum(sample(1:6, 50, TRUE) == 6) \# how many times is it 6?
\# [1] 9

You can easily use the up arrow in the console to repeat this - you'll see that the number of 6 's varies. If we repeated this 100 times we could see how frequent a value of 12 or greater is. To do this we'll use a loop. First we'll create a vector of NAs to store the data, then we'll use a loop to run sum (sample (1:6,50,TRUE)==6) 100 times.

```
die <- rep(NA, 100) # vector to store results
for (i in 1:100) {
    die[i] <- sum(sample(1:6, 50, TRUE) == 6)
}
table(die)
```

\# die
$\begin{array}{lllllllllllll}\text { \# } & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
$\begin{array}{lllllllllllll}\text { \# } & 3 & 3 & 6 & 10 & 17 & 18 & 11 & 18 & 5 & 6 & 2 & 1\end{array}$
sum(die >= 12)
\# [1] 9

So a value of 12 or greater comes up 9% of the time, which is a bit different from the p-value we got from prop.test(). To get a more stable p-value we need to try this 1000 time rather than a hundred (go ahead and try it if you like) We don't have strong enough evidence to conclude that the die is not fair. This is much faster than rolling a die 5000 times and recording the results!

Note: here we created a vector to store the results before running the loop. This is recommended, as it is more efficient, but you can "grow" a vector from inside a loop.

2.7 Exercises.

1) The function rep() makes repeated series - for example try rep (4,times=5) and $\operatorname{rep}(c(1,2), e a c h=3)$. Use $r e p()$ to enter the sequence 1111 22223333 repeated 3 times. Now convert it to a factor with the levels "Low","Medium", and "High". Can you change the levels to "Never","Rarely","Sometimes"?
2) Convert the factor from Problem 1 (the final part, with levels "Never","Rarely", and "Sometimes") into a character vector, and save it (assign it a name). Can you convert the character vector to a numeric vector?
3) Earlier we used the factor variable a (created by a<-factor (scan(text="2 4 33211234233413214324 "))) Convert a into an ordered factor with levels "Sm", "Med", "Lg","X-Lg" (with 1 for "Sm"). How many values are equal to or larger than " Lg "?
4) We can use the output of table() with barplot() to view the frequency of levels in a factor. Extending our discussion of rolling die, we can use this to view the likelihood of rolling any particular value on one die using barplot (table (sample ($x=1: 6$, size $=1000$,replace=TRUE))). How does this change if we add the rolls of 2 dice together - i.e. what is the distribution of the sum of two dice? (Hint: recall that vectors are added in an element-wise fashion, and that sample() returns a vector).

Extra What happens if the two dice have different numbers of sides? You should be able to modify the code you used for $\# 4$ to simulate what happens with (E.G.) a 4 sided and a 10 sided dice.

Chapter 3

Quantitative Variables

Creating and using continuous variables in \mathbf{R}

3.1 Introduction

In the last chapter, we began working with qualitative data. Now we'll look at how to handle quantitative (continuous, or numerical) data.

3.2 Working with Numeric Data

In the first chapter we saw some functions that can be used with numeric vectors - here we'll demonstrate a bit more. We'll begin with some data that represents the size of a group of mp3 files (in MB), and get some summary statistics:

```
mp3 <- scan(text = "5.3 3.6 5.5 4.7 6.7 4.3 4.3 8.9 5.1 5.8 4.4")
mean(mp3)
# [1] 5.327273
var(mp3)
# [1] 2.130182
sd(mp3)
```

```
# [1] 1.459514
median(mp3)
```

\# [1] 5.1
summary (mp3)
\# Min. 1st Qu. Median Mean 3rd Qu. Max.

\#	3.600	4.350	5.100	5.327	5.650	8.900

These functions mostly do what we'd expect. The function fivenum() gives similar output to summary (), but differ slightly, since fivenum() returns the upper and lower hinges ${ }^{1}$, while summary () returns the 1 st and 3 rd quartiles, and these can differ slightly depending on the number of data points.

```
quantile(mp3, c(0.25, 0.75))
# 25% 75%
# 4.35 5.65
quantile(mp3, c(0.18, 0.36,0.54, 0.72, 0.9))
# 18% 36% 54% 72% 90%
# 4.30 4.58 5.18 5.56 6.70
```

Notice that the function quantile() can return any desired quantile.

3.3 Hypothesis Testing

As we did for the qualitative data we can test hypotheses about quantitative data. For example, if we thought the mean was 4.5 , we could test if the data support this by making a t-test. > Recall that t is the difference between observed and hypothesized means in units of the standard error, and standard error of the mean is standard deviation divided by the square root of n, and note that we can use pt () to calculate probabilities for a t-distribution. See "?Distributions" for more distributions.

[^8]```
t <- (mean(mp3) - 4.5)/(sd(mp3)/sqrt(length(mp3)))
pt(t, df = length(mp3) - 1, lower.tail = FALSE) * 2
```

\# [1] 0.08953719
\# *2 for 2 sided test

Recall that length(mp3)^0.5 is the square root of $n$; we could also use sqrt(length(mp3)).

Of course, R has a built in t -test function that saves us the work:

```
t.test(mp3, mu = 4.5)
#
One Sample t-test
#
data: mp3
t = 1.8799, df = 10, p-value = 0.08954
alternative hypothesis: true mean is not equal to 4.5
95 percent confidence interval:
4.346758 6.307788
sample estimates:
mean of x
5.327273
```

We provide the null value of the mean with the argument mu.

### 3.4 Resistant measures of center and spread

Since the mean and standard deviation can be quite sensitive to outliers, it is occasionally useful to consider some resistant measures of center and spread, so-called because they resist the influence of outliers. We'll add an outlier to our mp3 data and experiment.

```
mp3[8] <- 10.8
mean(mp3)
```

\# [1] 5.5

```
median(mp3)
```

\# [1] 5.1

```
mean(mp3, trim = 0.1)
```

\# [1] 5.122222

The median is substantially lower than the mean, but trimmed mean ${ }^{2}$ is much nearer the median. Trimming more of the data will get still closer to the median.

For resistant measures of spread, one candidate is the "Interquartile range" or IQR, defined as the difference between the 3rd and 1st quartiles. Another candidate is the "median absolute deviation" or MAD, defined as the median of the absolute differences from the median, scaled by a constant ${ }^{3}$. If that sounds complex, it is simple in $R$, since $R$ works easily with vectors.

```
IQR(mp3)
[1] 1.3
median(abs(mp3 - median(mp3))) * 1.4826
[1] 1.03782
mad(mp3)
[1] 1.03782
```

Of course, there is already a function for MAD, so we don't need to do it "by hand".

[^9]
### 3.5 Visualizing Quantitative Data

One of the things we often want to do with qualitative data is "have a look". There are several ways to do this in R, and we'll review them here. The first and most common is the histogram. First we'll add another album's mp3 file sizes to our data mp3 - note that c() can be used to combine vectors also.

```
mp3[8] <- 8.9
mp3 <- c(mp3, scan(text = "4.9 5 4.9 5.4 6.2 5.6 5.1 5.8 5.5 6.7
@ 7"))
```

```
par(mfrow = c(1, 2)) # split the plot
hist(mp3)
hist(mp3, prob = TRUE, col = "grey")
```

Histogram of mp3


$$
\begin{array}{lllllll}
3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

Histogram of mp3


We have 2 versions of the histogram here - in the first, the $y$-axis is in units of frequency, so the scale changes for differing n , while the second is in units of probability, so distributions with differing n can be compared. Another useful visualization is the kernel density estimate (KDE), or density estimate, which approximates a probability density function.

```
par(mfrow = c(1, 2)) # split the plot
hist(mp3)
lines(density(mp3), col = "red")
hist(mp3, probability = TRUE, col = "grey")
lines(density(mp3), col = "red")
```



Note that the KDE approximates the histogram (and should have the same area), but for over-plotting on the histogram, the histogram must be in units of probability. In a case like this where our density function is off the scale, we might need to force the histogram to use a longer $y$-axis, which we can do using the ylim argument to specify the $y$-axis limits. (We'll use this optional argument with many plotting functions)

```
hist(mp3, probability = TRUE, col = "grey", ylim = c(0, 0.6))
lines(density(mp3), col = "red")
```



Here's another example, using rnorm ( $)^{4}$ to generate some random data from the normal distribution.

```
par(mfrow = c(1, 2)) # split the plot
a <- rnorm(n = 40, mean = 7, sd = 2)
hist(a, prob = T, col = "grey")
hist(a, prob = T, col = "grey", breaks = seq(0.5, 14, 1.5))
```

[^10]

Histogram of a

Histogram of a

Notice that these two histograms represent the same data - this is one of the weaknesses of histograms: the idea they give us about the data depends on the bins used. This example shows how the breaks argument can be used to specify where the "bins" are in the histogram. Here we used the function seq() to create a sequence with lower and upper bounds and step size (0.5, 14 , and 1.5 in our example). Breaks can also be an arbitrary sequence - try breaks $=c(0,4,5,5.5,6,6.5,7,7.5,8.5,14))$ and see what happens!

## Note:

About arguments: Notice that here the argument probability=TRUE has been abbreviated as prob=T. R is happy to accept unambiguous abbreviations for arguments. R is also happy to accept un-named arguments in the order they are entered - we did this in our call to seq() in the last example - we could have specified seq (from=0.5, to=14.0, by=1.5). For the simpler functions that I use frequently I don't usually spell out the arguments, though here I will tend to spell them out more frequently.

Boxplots are another useful visualization of quantitative data which show the median, lower and upper "hinges" and the upper and lower whiskers. They can also be "notched" to show a confidence interval about the median. Values beyond the whiskers are possible outliers.

```
par(mfrow = c(1, 2))
boxplot(mp3)
boxplot(mp3, notch = TRUE, col = "cornsilk")
```



The value of 8.9 seems rather suspicious doesn't it?
We can visualize the "raw" data using plot(). Since plot() requires arguments for both x and y , but we are only providing x , the indices of x will be used for x , and the values of x for y .

```
plot(mp3)
```



This method doesn't give us summary values like a boxplot does, but it has the advantage of letting us look for structure in the data (though it won't work for very large datasets). For example, here it is evident that the first half of the data set is more variable than the second half. Whether this is important or not depends on nature of the data.

Two other tools that are sometimes useful are the stripchart and the stem and leaf plot. The "stripchart" is a sort of "one-dimensional scatterplot". The argument method tells R how to display values that would over plot.

```
par(mfrow = c(3, 1))
stripchart(mp3)
stripchart(mp3, method = "jitter")
stripchart(mp3, method = "stack")
```



A final trick is the stem and leaf plot, which was originally developed because it could quickly be created with pencil and paper. While it looks simple and a bit crude, it has the advantages that it preserves the original data - from a stem and leaf plot you can reconstruct the actual values in the data, which you can't do with most of the other visualization tools we've looked at here.

```
stem(mp3)
```


## \#

\# The decimal point is at the |

```
2 | 6
4 | 3347990113455688
6 | 2770
8 | 9
stem(mp3, scale = 2)
#
The decimal point is at the |
#
3 | 6
4 | 334799
5 | 0113455688
6 | 277
7 | 0
8 | 9
```

The stem and leaf chart shows that the lowest value is 3.6 , and occurs once, while the maximum value is 8.9 , which may be an outlier. Stem and leaf plots are useful for exploratory data analysis (EDA), but I've rarely seen them published; histograms are much more commonly used.

### 3.6 Converting Quantitative Data to Qualitative

Sometimes we need to take a quantitative variable and "simplify" it by reducing it to categories. The function cut () can do this.

```
m.r <- cut(mp3, breaks = c(3:9)) # specify the breaks
m.r
```

```
[1] (5,6] (3,4] (5,6] (4,5] (6,7] (4,5] (4,5] (8,9]
[9] (5,6] (5,6] (4,5] (4,5] (4,5] (4,5] (5,6] (6,7]
[17] (5,6] (5,6] (5,6] (5,6] (6,7] (6,7]
Levels: (3,4] (4,5] (5,6] (6,7] (7,8] (8,9]
m.r[which(mp3 == 5)] # values of 5.0 coded as (4,5]
```

\# [1] $(4,5]$
\# Levels: $(3,4](4,5](5,6](6,7])(7,8](8,9]$

Note non-matching brackets here: (4,5] - this means "greater than 4 and less than or equal to $5 "$, so 4.0 is not included, but 5.0 is included in the interval $(4,5]$. We can demonstrate that this is so: m.r[which(mid.rib==5.0)] returns $(4,5]$.

We can now treat the factor m.r like any other factor variable, and assign other names to the levels as we see fit.

```
table(m.r)
m.r
(3,4] (4,5] (5,6] (6,7] (7, 8] (8, 9]
(lllllll
levels(m.r)
[1] "(3,4]" "(4,5]" "(5,6]" "(6,7]" "(7, 8]" "(8,9]"
levels(m.r) <- c("tiny", "small", "medium", "med-large", "large",
 "huge")
table(m.r)
m.r
small
huge
1
plot(m.r)
```



Note that we could use any grouping we want to for breaks, just as we saw with hist(). Finally notice that in this case the function plot() creates a barplot. plot() is what is known as a generic function, meaning that what it does depends on the type of input it is given. For a qualitative variable it will return a barplot. As we progress, we'll see more kinds of output from plot(). The use of generic functions in R reduces the number of commands one needs to learn.

### 3.7 Fitting and Modeling Distributions

t-distribution can be examined with a group of functions: $d x(), p x(), q x()$, and rx() giving (respectively) the density, probabilities, quantiles, and random samples from the $x$ distribution; arguments include parameters specific to the distributions. Most common distributions are included, see ?Distributions for a full listing.
We'll demonstrate some of these functions for the exponential distribution. For example, what would be the probability of value of 3 or more from an exponential distribution with a rate parameter of 1 ?

```
pexp(q = 3, rate = 1, lower.tail = FALSE)
```

\# [1] 0.04978707

The p-value is pretty close to 0.05 , so about 1 of 20 random values from this
distribution would be greater than 3. Let's generate 100 values and see how many are greater than or equal to 3 .

```
x.exp <- rexp(n = 100, rate = 1)
sum(x.exp >= 3)
```

\# [1] 2

Fairly close to 4.97 , and a larger sample size would get even closer:

```
sum(rexp(n = 1e+05, rate = 1) >= 3)/1000
```

\# [1] 5.045

Let's look at how we'd investigate the fit of a distribution. Imagine we have a sample of 100 values, and we think they come from an exponential distribution with a rate of 1 .

```
x.exp <- rexp(n = 100, rate = 0.7)
hist(x.exp, prob = TRUE, ylim = c(0, 0.8))
lines(density(x.exp), lty = 2)
lines(density(rexp(10000, rate = 1)), col = "red")
qqplot(x = rexp(10000, rate = 1), y = x.exp, main = "QQ-plot;
@ Exponential")
abline(a = 0, b = 1)
plot(ecdf(x.exp), pch = 21)
```



The first two plots here suggest that the distribution isn't what we hypothesize - rate $=1$ - (of course in this example we know the rate is not 1 , our code that
generates it shows the value is 0.7 ). For more ideas on modeling distributions in R see [Fitting Distributions with R] (http://cran.r-project.org/doc/contrib/ Ricci-distributions-en.pdf)

### 3.8 Exercises.

1) The $R$ function rnorm ( $n$, mean, sd) generates random numbers from a normal distribution. Use rnorm(100) to generate 100 values and make a histogram. Repeat two or three times. Are the histograms the same?
2) Make a histogram from the following data, and add a density estimate line to it. (use scan() to enter the data). Try changing the bandwidth parameter for the density estimate (use the argument "adj" for density( ); 1 is the default, 2 means double the bandwidth). How does this change the density estimate?
2630542570525126671821291712183530363621241810432815 2627 Note: If you are submitting this HW for class in a .txt file, you needn't include the plot, just include a brief description of how changing the bandwidth parameter for density() alters the shape of the curve. Note that the bandwidth argument here can be a string that matches on of several methods for bandwidth calculation or a numeric value for the bandwidth.
3) Using the data above compare: a)the mean and median and, b) the standard deviation, IQR and the MAD.
4) Use the function boxplot () to find possible outliers in the data from problem 2 (outliers shown as individual points; you don't need to show the boxplot, but you need to show the values that are possible outliers). Compare: a) the mean and median of the data with and without the outliers and b) the standard deviation and MAD for the data with and without the outliers.

## Chapter 4

## Documenting Your Work

## How not to forget what you were doing

### 4.1 Introduction

One of the big challenges in using any analytical software tool is how to keep track of what you are doing, or how to document your work. In the real world, where the time needed to complete complex (or even supposedly "simple") projects often comes in short chunks with many interruptions, what this really means is not just documenting your work, but documenting your thought process about your work.

Before I used R I did all my data manipulation, etc in spreadsheets, and dumped data into stats software only for things like fitting models. I learned to do a wide range of things in spreadsheets (though often in rather kludgy ways!). But I often had the experience of coming back to an old (in months or even days) spreadsheet and being rather bewildered because I couldn't figure out what in the world I had been doing with it. ${ }^{1}$

When I started using R, this habit carried over - I just pulled data into R for complicated stuff, and did everything else in spreadsheets. I copied and pasted my R code and output and figures into a word processor document to keep running notes on what I was doing. I discovered (and you may also know) this pattern leads to a lot of repeated copy/paste activity - for example when you discover that you have some mis-entered data and have to rerun the analysis, you have to repeat the copy/paste for all output and graphs. This pattern of working is also a headache!

[^11]To fully document statistical analysis, we need to have 4 components:

1. the exact method used to do the analysis (the R code)
2. the results of the analysis (statistical tables, etc)
3. any figures needed to illustrate the analysis
4. the appropriate commentary and narrative

There have been various tools that have attempted to simplify this process. Here we'll introduce the compile notebook functionality in R Studio. ${ }^{2}$ This does everything on this list and is simple enough that it is perfect for homework assignments. In Chapter 14 we'll explore some more advanced tools.

### 4.2 Background

The "compile notebook" function in R studio takes a . R file and creates an HTML file that includes any comments and code, interspersed with the console output from the code and any figures created by the code. If you go to the File menu and choose New File>R script you will open a .R file in your editor.
NOTE: A .R file is just a .txt file with .R as the file extension, so you could edit it with any text editor.

If you have never used LaTeX or a similar writing tool or written html, this may seem odd to you. When using most word processors, you see what the output will look like "in real time". Compiled documents (like those we'll explore here) can be though of as containing the instructions for making the final document.

There are four important things to remember ${ }^{3}$ when working with.$R$ files that will be compiled:

1) For successful compilation, a . $R$ file can contain only valid $R$ code and comments.
2) Compilation of a $\cdot R$ file into a report occurs by running all the code in the file in a blank environment. If you run the code from the editor, all data/objects the code creates will appear in your "Environment" tab in the upper-right quadrant of the RStudio window. Compilation occurs in a clean environment.
3) The .R file must contain all the code needed to create or load the data, or to create any objects used in the analysis. This follows from \#1. (This includes loading any packages needed - more on this later).

[^12]4) Compilation of a .R file will create errors if the code in the.$R$ file includes any interactive functions (E.G. edit(), identify(), file.choose()).

The vast majority of compilation problems I've encountered trace back to these four issues.

### 4.3 An Example

Open an R script file. Copy the following into it:

```
#'## A test of document compilation
#' Some important text describing what this data is about.
#' Since this line begins with a "#'" it will be rendered as text.
#' See how nice it looks!
This is a comment.
Since it only begins with a "#" it will be rendered as a comment.
a<-1:25
b<-sort(rnorm(25)) # by default mean=0 and sd=1
mean(b)
sd(b)
#' Note mean and sd match the default values of sd=1 and mean=0
plot(a,b,type="l", col="red",lwd=2)
#' Figures are included. No need to copy and paste!
```

We can compile this R script file very easily. First we should save it. Let's call it "Ch4Demo1.R". You might as well save it in "Code Files" folder in your "Essential R" folder.

As we noted above, a . R file contains 2 kinds of content only - R code and comments (preceded by \#). If you look closely you will see that there are also two sub-types of comments ${ }^{4}$ - those that begin with "\#" and those that begin with "\#'". Comments that begin with \#' will be end up formatted as text, not as code comments.

Here is where RStudio makes this super easy. You can just go to the File menu and choose Compile Report or you can just click the "compile notebook" button that appears at the top of the editor pane when a. R file is active:

When you click this button, it will ask you what output format you want. You can choose "Html", "MSWord", and "Pdf" (to use pdf you will need to install LaTeX on your computer, check which version is appropriate for your OS). For this class, HTML output is preferred.

[^13]

Figure 4.1: NotebookButton

If you click the button shown above and get a message that you need to install or update the packages rmarkdown and/or rprojroot, it should be no problem ${ }^{5}$. You can go to the "Packages" tab in the upper right pane in RStudio and click "Install" and the type the names of the packages. Alternately just type (in the console) install.packages ("package-name-here") ${ }^{6}$. If this is the first time you have installed packages, you may be prompted to select a mirror - just choose one nearer your location. R should work for a minute and you should get a preview of your html file. Easy! You can also change this anytime under Tools $>$ Global Options (Mac: RStudio>Preferences) and choose the "packages" tab.

### 4.4 Compilation from the console

Compilation can all be done from the console also if you need to, and there are several reasons that might be useful: 1) You are not using RStudio, 2) You want to have access to the figures as stand alone files (E.G. to insert into other documents), 3) You are scripting the production of multiple reports.

Assuming the file is saved as "Ch4Demo1.R" in the "Code Files" folder in your "Essential R" folder, make sure that the "Code Files" folder is set as your working directory ${ }^{7}$. Now we can load rmarkdown and compile the document.

[^14]```
rmarkdown::render("Ch4Demo1.R") # compile your document to Rmd
```

Notice: 1) No preview in RStudio 2) The folder the .R file was saved in now contains an .html file and an .md file with the same name as the .R file. 3) There is also a folder called Figure in the enclosing folder.

If you don't specify the output= argument here you will still get an .html file but the extension will be .txt.

NOTE: If you choose to call render() from the console, you should not include the call to render() in you . \mathbf{R} file If it is in your . R file when you call render () on the file it will recursively call render () again, which you don't want. In my experience it is much simpler to use the "compile notebook" button, but I include the command line so you aren't completely reliant on RStudio. (If you prefer to call rmarkdown from the console and don't want to have to remember the command, you can include it in your .R file but comment it out so it won't run recursively - just don't select the ' $\#$ ' when you select that command and send it to the console to compile).

4.5 Help! I'm Getting an Error!

The most common source of errors using rmarkdown are actually not errors in rmarkdown, but errors in the .R file being compiled - see the " 4 important things to remember" above. Unfortunately, the error messages generated from compiling a file may be more cryptic. Here we'll demonstrate a common problem - a missing variable. In your "Ch4Demo1.R" file, comment out the line $\mathrm{a}<-1: 25$ (put "\#" in front of it). Now let's remove a in the workspace by typing (in the console):

```
rm(a)
```

Now if you run the code in "Ch4Demo1.R" line by line, you will get an obvious error when you get to plot(a, b) - there is no a , and R complains:

```
Error in plot(a, b, type = "l", col = "red", lwd = 2) :
    object 'a' not found
```

As you might expect, you will get an error when you try to compile the file with the line $a<-1: 25$ commented out. When you knit the file by clicking the "notebook" icon in RStudio, the error message you get in the " R Markdown" console is a bit different:

```
Line 3 Error in plot(a,b,type="l",col="red",lwd=2): object 'a' not
found
Calls: <Anonymous>
... withCallingHandlers -> withVisisble -> eval -> eval ->
plot Execution halted
```

The confusing bit here is that the error message points to Line 3, while the plot () command is in line 8 of the .R file - the line numbers referred to in these error messages don't seem to match the line numbers in the file being compiled.

If you run the command from the console to knit the file, you don't get any warning errors, but the .html file that is created (in your working directory) has an object 'a' not found error, that you wouldn't notice if you didn't check it over, since when run from the console you don't get an automatic preview of the file. This is either a reason compilation from RStudio is preferable, or a reason to proofread your html files carefully.

There are other ways to create errors on compilation of a .R file (see the list of 4 important ideas above), but this example is important: Missing objects are (in my experience) the most common cause of errors with rmarkdown.

Missing objects can cause errors when compiling your document even if the code worked in the console because when rmarkdown evaluates the code to compile a document it does so in a separate workspace, not in your workspace. You can confirm this by clearing your workspace (The broom icon in the environment pane in RStudio, or rm(list=ls())) and compiling the "Ch4Demo1.R" file (uncomment the $\mathrm{a}<-1: 25$ line). Now look at your workspace in the environment pane or type ls() in the console. Notice that neither a nor bexist in your workspace, yet your document compiled without trouble.

This is not a bug, it is a feature. The intent of rmarkdown is to enable "reproducible research". This means that everything required for the analysis should be in the script, nothing should happen that isn't documented. This ends up creating errors when you write code in the console and don't include it in your script. The solution is simple - write all code in the editor and test it in the console (recall control + enter will run the current line in the editor).

A final note: Plots are included in the .html file only when the plotting window is complete, or when a \#' style comment is added (which closes a block of R code in the .md file). So if the plotting window is split (e.g using par (mfrow=c (1,2))) the plot won't be inserted until both panes have been plotted, even if the second plot isn't called until many lines later. The file "Notebook and par.R" in the code files directory of EssentialR can be modified and compiled to see how this works.

4.6 Exercises.

1) Take your code for Ch2 (Problem 4) and Ch3 (Problem 2) and paste it into a single .R file. Test it to make sure it runs. Add comments where needed in the file to discuss/describe the results. Run the code from the console to check it (select all and Ctrl+enter). Now compile the file. (Hint: Before testing the code clear your workspace (Session>Clear Workspace) to be sure the code doesn't rely on anything left in your workspace from before.)

Chapter 5

Help in R

What to do when you need help

5.1 Introduction.

When using R, one needs help often. Unfortunately, many users find R's extensive built in help files to be confusing, especially when you aren't really sure which function you need to use, or when you are a new R user.

Actually, when I was a new R user I probably would have said the help files were "nearly useless", because I didn't understand them. In this chapter I hope to give you a handle on how to make use of them.

5.2 R's Help System

For any function you can type ? followed by the function name (e.g ?mean). You can also search for similar functions using ?? - for example ??mean will return a list of functions that include the word 'mean' in the name of short description ${ }^{1}$.

In RStudio you can also search the help functions from the "search" field in the "Help" tab. Finally, RStudio has very good "function hinting" to give short reminders of function arguments. In the RStudio editor or console type mean() and with the cursor inside the (), press "tab". A window will pop up showing you arguments for the function. You can move through the list with the mouse or arrow keys, and use "tab" to select one from the list.

[^15]All R help files include several parts: a Description of the function, a typical Usage of the function, and a list of Arguments and their brief descriptions. Sometimes a section called Details provides additional details about the arguments. Usually there is a section called Value where the value returned by the function is explained. There are often also References and a list of similar or related functions under See Also. Finally, (almost) all help files include Examples of how the function can be used.

The Examples section is often one of the more useful features of the R help system. Example code is meant to "stand alone" - any data needed for the example code should be provided - so that you can copy and paste the code into your console and run it, and play with arguments to help you figure out how it works. In my experience this is one of the best ways to learn about a function.
Note that help file examples generally make very few assumptions about the state of your R workspace. For this reason they may include lines like require(grDevices) which loads the grDevices package, or stats: : rnomr (), which specifies that rnorm is in the stats package. Since both of these packages are loaded by default on startup, these details wouldn't be necessary unless you had removed them, but the examples don't assume that they will be there.

5.3 Help! I Don't Know Which Function to Use.

R's help system is most useful when you know what function you need (or if you can at least guess a function that might be linked to the one you need). The more frustrating quandary is when you don't even know the function you should use. This is even worse when you have an idea in your head for what you want, but aren't even sure what the correct words for it are.

At times like this I use [RSeek] (http://www.rseek.org), which is an R specific search engine. This gets around the problem of searching for ' $R+$ question', since R is just a letter. RSeek helpfully organizes search results into categories such as "R-Project", "Popular Package", "RStudio", etc (Note that these tabs don't appear until after you have begun a search).
When you don't know what function to use, RSeek is your friend. I usually find that if I describe what I am trying to do and look for forum posts (stack exchange, etc) I can find what I am looking for. It sometimes takes a few tries to find the right wording for my query.

Another useful resource is the R archive "CRAN" (https://cran.r-project.org). The "Task Views" tab on the left points to overviews of analytical areas. These are often useful if you are trying to figure out a big question like "How do I fit mixed effects models"?

The "Documentation" tab on the CRAN site also contains many official manuals and contributed documents (in a wide array of languages). You may find what you are looking for here, but it would not be the first place I would look.

Figure 5.1: Rseek

5.4 I Need More Help

You can also create an account and post questions to the " R help mailing list" (see the "Mailing Lists" link at www.r-project.org/mail.html). However, don't post a question until you are sure it hasn't been answered already ${ }^{2}$ - in other words "search first, search second, ask third". Also, be sure to follow the [posting guidelines] (http://www.r-project.org/posting-guide.html) - they may vary from site to site, the link is for the R help forums.

Some thoughts about posting to the R mailing lists (and this applies in general to all online help questions about R). The main idea here is to make it easy for someone to help you.

1. Remember no one gets paid to answer your questions - questions are answered by other R users (occasionally even by people who wrote parts of R). The R user community is generous with its time and expertise - don't abuse that. My mantra is "search first, search second, ask third".
2. State your question as clearly as possible.
3. Make sure you include a reproducible example in your post.
4. If you are getting error messages, include the error message and the code that generated it.
5. Allow time for responses.

Here is an example of how an example could be posted (from the posting guide, you'll need to read the posting guide for the answer).

[^16]```
If I have a matrix x as follows:
 x <- matrix(1:8, nrow=4, ncol=2,
 dimnames=list(c("A","B","C","D"), c("x","y"))
x
x y
A 1 5
B 2 6
C 3 7
D 4 8
how can I turn it into a dataframe with 8 rows, and three
 columns named `row', `col', and `value', which have the
 dimension names as the values of 'row' and `col', like this:
x.df
row col value
1 A x l
```

Notice that the example includes the code to make the data needed for the example. This makes it easy for someone to help you. You will get help more quickly if you make it easy for someone to help you.

### 5.5 Understanding Errors

One of the skills that takes time to develop is understanding error messages. In some cases error messages can be a bit cryptic. In Essential R I will point out common errors along the way to assist in recognizing them.

As we've noted, R usually responds to unbalanced parentheses with a + instead of the prompt ( $>$ ) in the console. While this seems obvious, when nesting functions it is quite easy to misplace a ")".

### 5.6 Exercises

To practice using the help system work these three exercises. To reinforce what you learned about R notebooks, create an R script file with your answers and compile it to html (remember the notebook button on the editor toolbar). Be sure to review the .html file for errors.

1) Practice running help examples from ?hist, and ?plot (in \{graphics\}): What can you learn about these functions? (Include your example code in your R script file.)
2) Follow some links from ?hist, and ?plot and run some examples (include them in your HW) - what did you learn from any of these linked files?
3) Use www.RSeek.org to find a method to calculate the "outer product" of $2,4,6,8$ and $-2,-1,0,1,2,3$.

## Chapter 6

## Bivariate Data

## Basic approaches to dealing with two variables

### 6.1 Introduction

A great deal of statistical analysis is based on describing the relationship between two variables. For example - how does planting density (high, medium, or low) alter crop yield? How is home price related to lot size? How are height and foot size related? Is the incidence of heart disease different for men and women? Here we'll consider working with two qualitative variables, one qualitative and one quantitative variable, and two quantitative variables.

### 6.2 Two Qualitative Variables

We sometimes want to see how two qualitative (factor) variables are related. Here we'll work with some data for number of cylinders ${ }^{1}$ (cyl) and transmission type (am) from 32 models of cars reported in Motor Trend magazine in $1974{ }^{2}$.

```
cyl<-factor(scan(text= "6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4
๑
 8 8 8 8 4 4 4 8 6 8 4"))
```

[^17]am<-factor (scan (text $=1 \begin{array}{lllllllllllllllllllll}1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
$0000011111111111))$
levels (am)<-c("auto", "manual")
table (cyl,am)
\# am
\# cyl auto manual
\# $4 \quad 3 \quad 8$
$\begin{array}{llll}\# & 6 & 4 & 3\end{array}$
\# $8 \quad 12$
table(am, cyl)

| \# |  | cyl |  |  |
| :--- | :---: | ---: | ---: | ---: |
| \# |  |  |  |  |
| am | 4 | 6 | 8 |  |
| $\#$ | auto | 3 | 4 | 12 |
| $\#$ | manual | 8 | 3 | 2 |

It appears that manual transmissions were more common with smaller numbers of cylinders, while cars with 8 cylinders were far more likely to have automatic transmissions. Notice that our old friend table() can be used to give a twoway frequency table as well. Also note that as we discussed in Chapter 2, it is simpler to enter a long factor as level numbers and assign the levels later.

Sometimes we would rather see tables like this expressed as proportions. R can easily do this via the function prop.table().

```
tab <- table(cyl, am)
prop.table(tab, margin = 1)
am
cyl auto manual
4 0.2727273 0.7272727
6 0.5714286 0.4285714
8 0.8571429 0.1428571
```

The margin=1 tells $R$ that we want the proportions within rows. We can see that $85 \%$ of 8 cylinder cars have an automatic compared to $27 \%$ of four cylinder cars. We can also use margin=2 to have proportions within columns. If we don't include the margin argument, the default it to proportions of the entire table.

```
prop.table(tab, margin = 2)
am
cyl auto manual
4 0.1578947 0.6153846
6 0.2105263 0.2307692
8 0.6315789 0.1538462
prop.table(tab)
```

```
am
cyl auto manual
4 0.09375 0.25000
6 0.12500 0.09375
8 0.37500 0.06250
```

From the first we can see that $63 \%$ of cars with automatic transmissions had 8 cylinders. From the second we can see that $38 \%$ of cars had both automatic transmission and 8 cylinders.

Finally, note that in these proportion tables $R$ is giving us a larger number of decimal places than we might really want. This can be controlled in several ways - the simplest is via the function signif (), which control the number of significant digits printed ${ }^{3}$.

```
signif(prop.table(tab), 2)
```

```
am
cyl auto manual
4 0.094 0.250
6 0.120 0.094
8 0.380 0.062
```

We may want to test whether there is any association between categorical variables. The simplest approach is often to use the $\chi^{2}\left(\mathrm{Chi}^{2}\right)$ test with the null hypothesis that the variables are independent.

```
chisq.test(tab)
```

[^18]```
# Warning in chisq.test(tab): Chi-squared approximation
# may be incorrect
#
# Pearson's Chi-squared test
#
# data: tab
# X-squared = 8.7407, df = 2, p-value = 0.01265
```

In this case we have evidence of association between more cylinders and automatic transmissions, but we have a warning - this is because there are too few values in some of our groups $-\chi^{2}$ is not valid if more than 20% of group have expected values less than 5 . We can confirm that this is the problem by capturing the output of chisq.test().

```
names(chisq.test(tab)) # see all the stuff that it produced?
# Warning in chisq.test(tab): Chi-squared approximation
# may be incorrect
# [1] "statistic" "parameter" "p.value" "method"
# [5] "data.name" "observed" "expected" "residuals"
# [9] "stdres"
chisq.test(tab)$expected
# Warning in chisq.test(tab): Chi-squared approximation
# may be incorrect
# am
# cyl auto manual
# 4 6.53125 4.46875
# 6 4.15625 2.84375
# 8 8.31250 5.68750
```

We have a couple of options to deal with such an violation of assumtions:

1. As long as we have a table that is greater than 2 x 2 we may be able to combine some categories to increase the expected values, though that may not make sense depending on what the categories represent.
2. Perhaps better is the option noted in ? chisq. test that allows us to simulate the null distribution, which lets us avoid the violation of assumptions (and the warning). Of course, you should use a reasonably large number of iterations, which does impose a slight speed penalty. Something like chisq.test (tab, simulate.p.value=TRUE, $B=5000$) should work. The $B=5000$ tells R to generate 5000 random scrables of the data that have the same row and column totals.

Note that it is not an option to simply multiply the table by some factor that ensures our expected values don't fall below 5 . This is because the $/ c h i^{2}$ test statistic is calculate on observed and expected frequencies, not on relative frequencies or proportions.

By the way, we could also calculate the expected values by hand - rowSums() will give the row sums of an array, so rowSums(x)/sum(x) will give the row proportions for an array.

```
sum(tab) # total
# [1] 32
outer(rowSums(tab)/sum(tab), colSums(tab)/sum(tab)) * sum(tab)
```

```
# auto manual
# 4 6.53125 4.46875
# 6 4.15625 2.84375
# 8 8.31250 5.68750
```

It is nice to see that our "by hand" calculation matches R's calculations!
There are a couple of possible ways to visualize such data. One option is using a barplot.

```
op = par(mfrow = c(1, 2))
barplot(table(cyl, am))
barplot(table(am, cyl))
```


Note: the function par() is used to set graphical parameters - in this case we're specifying that the plotting window will be divided into 1 row and 2 columns. We've simultaneously saved the old par settings as op. There are a few more options we can use to dress this up. The confusing thing here is that it is the old settings that are saved, not the new ones. Also note that the function options () we discussed above functions in a similar way with assignment of old options. It is possible that you may never need to set options - it just depends on how you use R .

```
par(mfrow=c(1,2) ,mar=c (3,3,3,0.5))
barplot(table(cyl,am),legend.text=TRUE,main="Transmission and
@ cylinders")
barplot(table(cyl,am),beside=TRUE,legend.text=TRUE,
    main="Transmission and cylinders")
```

Transmission and cylinders

Transmission and cylinders

par(op)

Here in addition to dividing the plotting window we've used par() to reduce the plot margins. The final line restores the old par settings we saved earlier. ${ }^{4}$ Another option which is less familiar is the mosaic plot, which shows the proportions of each combination of factors.

```
mosaicplot(table(cyl, am), color = T, main = "Cylinders vs.
transmission",
    ylab = "Transmission", xlab = "Cylinders")
```

[^19]Cylinders vs. transmission

Note that many of the arguments here are optional. You can try leaving them out to see what they do; the minimum is mosaicplot (table (cyl,am)).

6.3 Two Quantitative Variables

We frequently find that we are looking for association between two quantitative variables. For example, using the motor trend cars data we might wish to look at the association between engine displacement (here in liters) and power output (horsepower).

```
disp=scan(text=
    "2.62 2.62 1.77 4.23 5.90 3.69 5.90 2.40 2.31 2.75 2.75 4.52
    4.52 4.52 7.73 7.54 7.21 1.29 1.24 1.17 1.97 5.21 4.98 5.74
    6.55 1.29 1.97 1.56 5.75 2.38 4.93 1.98")
hp=scan(text=
    "110 110 93 110 175 105 245 62 95 123 123 180 180 180 205 215
    230 66 52 65 97 150 150 245 175 66 91 113 264 175 335 109")
```


6.3.1 Exploring the data

```
op = par(mfrow = c(1, 2))
boxplot(disp)
boxplot(hp)
```


par(op)
par(op)

Both variables show a bit of skew, with a larger number of low values. The plot of horsepower shows one possible outlier. We can find which it is using logical extraction:

```
data(mtcars) # load the whole data set
mtcars[which(mtcars$hp > 250), ]
```

This shows only 2 cars with horsepower greater than 250 . Notice that here we used the function data() to load one of the built-in data sets, and that we used the $\$$ to specify a variable within a dataset. We'll discuss this in more detail soon. Also notice that within the [] we have a comma - the format is [rownumber, columnnumber], and we want the rows with $\mathrm{hp}>250$.

6.3.2 Correlation

We might guess that there is some correlation between displacement and power. A simple scatter plot will confirm this:

```
plot(x = disp, y = hp)
```


\# [1] 0.7910567

Notice that plot() here gives us a scatter plot ${ }^{5}$. The correlation coefficient r is reasonably high at 0.7910567 .

By default cor() gives us the pearson correlation. By setting the method argument to method="spearman" we can get the spearman rank correlation (which is more robust to outliers). It should be noted that the cor() function needs to be told how to deal with missing values (NA) - this is done via the argument use, which tells R which values to use. A setting of use="complete.obs" will often work (see ?cor for more information).

6.3.3 Regression

Often we want to go a step further and model one variable as a function of another. With two quantitative variables this is known as linear regression (regression for short). In this case, we might well suspect that larger displacement engines should be more powerful. In R such models are fit using $\operatorname{lm}()$ (for "linear model"):

```
model = lm(hp ~ disp)
model
```

[^20]```
#
Call:
lm(formula = hp ~ disp)
#
Coefficients:
(Intercept) disp
45.69 26.71
summary(model)
#
Call:
lm(formula = hp ~ disp)
#
Residuals:
\# Min 1Q Median \(\quad\) 3Q Max
-48.682 -28.396 -6.497 13.571 157.620
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 45.695 16.128 2.833 0.00816 **
disp 26.711 3.771 7.083 7.09e-08 ***

Signif. codes:
 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 42.64 on 30 degrees of freedom
Multiple R-squared: 0.6258, Adjusted R-squared: 0.6133
F-statistic: 50.16 on 1 and 30 DF, p-value: 7.093e-08
```

Notice a couple of things here:

1. in our call to $\operatorname{lm}()$ we specified $\mathrm{hp} \sim$ disp - this means hp as a function of disp. This type of model notation is used by a number of functions in R.
2. $\operatorname{lm}(h p \sim \operatorname{disp})$ returns only the intercept and slope for the model.
3. $\operatorname{lm}()$ has actually done much more - it has created an "lm object" that we have named model. Type names (model) to see what all is there - you can access all of these - for example model\$residuals will return the residuals from the model. 4. The function summary () when called on an lm object, gives a very helpful summary of the regression. This shows that our model is highly significant, with p-value $=7.093 \times 10^{\wedge}-8$.

If you recall one of the assumptions in regression is that the residuals are normally distributed. We can check to see if this is true:
plot(density(model\$residuals))


Overall, the residuals are not really normally distributed, but they are probably normal enough for the regression to be valid. Of course, checking model assumptions is a common (and necessary) task, so R makes it easy to do.

```
op = par(mfrow = c(2, 2))
plot(model)
```





The normal Q-Q plot does show that we may have one outlier, point 31 (The Maserati Bora). We could refit the model without it to see if it fits better.

```
op = par(mfrow = c(2, 2))
model2 <- lm(hp[-31] ~ disp[-31])
summary(model2)
```

```
#
Call:
lm(formula = hp[-31] ~ disp[-31])
#
Residuals:
\# Min 1Q Median 3Q Max
-44.704 -21.601 -2.255 16.349 72.767
#
Coefficients:
Estimate Std. Error t value Pr}(>|t|
(Intercept) 46.146 11.883 3.883 0.000548 ***
disp[-31] 25.232 2.793 9.033 6.29e-10 ***

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 31.41 on 29 degrees of freedom
Multiple R-squared: 0.7378, Adjusted R-squared: 0.7287
F-statistic: 81.6 on 1 and 29 DF, p-value: 6.291e-10
```

plot(model2)


par(op)
par(op)

Removing the outlier really improves the model fit - the $R^{2}$ increases to 0.729 , and the residuals look much more normal (the Q-Q plot is more linear). It is not generally wise to remove a value just because it is an outlier, though if you have reason to beleive the value is erroneous that may be grounds for excluding it from the analysis. It is less clear-cut whether removing outliers to meet assumptions for an analytical method is accepteable - I would probably err on the side of "don't remove". However, I do think it is a good idea to investigate the extent to which unusual values (outliers) influence the findings in a study - in a situation where their presence substantially altered the conclusions of a study, we would want to know that.

### 6.4 Qualitative and Quantitative Variables

When we have a quantitative and a qualitative variable, we can use similar tools to what we would use for two quantitative variables. Consider the data on cars - do we expect a difference in horsepower between cars with automatic and manual transmissions?

```
plot(am, hp)
```



It appears that more cars with automatic transmissions are generally more powerful, though the two most powerful cars have manual transmissions - we saw these earlier. We can use a two-sample t-test to see if these groups are different.

```
t.test(hp ~ am)
#
Welch Two Sample t-test
#
data: hp by am
t = 1.2662, df = 18.715, p-value = 0.221
alternative hypothesis: true difference in means between group auto and group manual is not equ
95 percent confidence interval:
-21.87858 88.71259
sample estimates:
mean in group auto mean in group manual
160.2632 126.8462
```

This show that the means are not different - likely the influence of the two "super-cars" with manual transmissions pulls the mean up enough to mask the difference.

### 6.4.1 ANOVA

Note that if we had more than two groups, we'd need a different approach - we can use oneway.test () to do a simple ANOVA. For two groups this is equivalent to the t-test, but it will work for more than two groups also.

Since R uses the function $\operatorname{lm}()$ for both regression and ANOVA, you may find it helpful to think about ANOVA as a kind of regression, where the predictor variable ( $x$-axis) is categorical.

NOTE: $\operatorname{lm}()$ and oneway.test() will return errors if you use a factor as the response variable, so recall that " $\sim$ " should be read as "as a function of", so that cyl $\sim \mathrm{hp}$ is "cylinders (factor in our case) $\sim$ horsepower" would not work here.

```
oneway.test(hp ~ am)
#
One-way analysis of means (not assuming equal
variances)
#
data: hp and am
F = 1.6032, num df = 1.000, denom df = 18.715,
p-value = 0.221
oneway.test(hp ~ cyl)
```

\#
\# One-way analysis of means (not assuming equal
\# variances)
\#
\# data: hp and cyl
$\# \mathrm{~F}=35.381$, num $\mathrm{df}=2.000$, denom $\mathrm{df}=16.514$,
\# p-value $=1.071 \mathrm{e}-06$
$\operatorname{summary}(\operatorname{lm}(h p \sim c y l))$
\#
\# Call:
\# lm(formula $=\mathrm{hp} \sim \mathrm{cyl})$
\#
\# Residuals:

| \# | Min | 1Q Median | 3Q | Max |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| \# | -59.21 | -22.78 | -8.25 | 15.97 | 125.79 |  |
| \# |  |  |  |  |  |  |
| \# Coefficients: |  |  |  |  |  |  |
| \# | Estimate | Std. Error | $t$ | value | $\operatorname{Pr}(>\|t\|)$ |  |
| \# (Intercept) | 82.64 | 11.43 | 7.228 | $5.86 e-08$ | $* * *$ |  |
| \# cyl6 | 39.65 | 18.33 | 2.163 | 0.0389 | $*$ |  |
| \# cyl8 | 126.58 | 15.28 | 8.285 | $3.92 e-09$ | $* * *$ |  |

```

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 37.92 on 29 degrees of freedom
Multiple R-squared: 0.7139, Adjusted R-squared: 0.6941
F-statistic: 36.18 on 2 and 29 DF, p-value: 1.319e-08
```

We'll dig into ANOVA in more depth in a later chapter.

### 6.5 Exercises

1) Using the data cyl and am (transmission type) from Part II, group vehicles into two groups - 8 cylinder and less than 8 cyl. Test whether there is evidence of association between number of cylinders ( 8 or $<8$ ) and type of transmission. (Hint - use levels() to re-level cyl and then use chisq.test()).
2) The built in dataset faithful records the time between eruptions and the length of the prior eruption (both in minutes) for 272 inter-eruption intervals (load the data with data(faithful)). Examine the distribution of each of these variables with stem() or hist(). Plot these variables against each other (scatterplot) with the length of each eruption (eruptions) on the $x$ - axis. How would you describe the relationship? Recall that you can use faithful\$eruptions to access eruptions within faithful.
3) Fit a regression of waiting as a function of eruptions (i.e. waiting eruptions; waiting on the $y$-axis and eruptions on the $x$-axis). What can we say about this regression? Compare the distribution of the residuals (model\$resid where model is your 1 m object) to the distribution of the variables.
4) The clustering evident in this data might suggest regression is not the best way to analyze it. Might it be better to compare the means using an ANOVA ? Create a categorical variable from eruptions to separate long eruptions from short eruptions (2 groups) and fit a model of waiting based on this. (Hint: a: use cut () to make the categorical variable. The argument 'breaks=' can be a single value - the number of groups to create, or a vector of $n$ values defining the edges of n-1 groups. b: Use $\operatorname{lm}()$ to fit the model, exactly as you did for the regression. $\operatorname{lm}()$ with a categorical predictor variable is an ANOVA.) How does this model compare with that from Ex 3? How did you choose the point at which to cut the data? How might changing the cut-point change the results?

## Chapter 7

## The Data Frame

## The $R$ equivalent of the spreadsheet

### 7.1 Introduction

Most analytical work involves importing data from outside of R and carrying out various manipulations, tests, and visualizations. In order to complete these tasks, we need to understand how data is stored in R and how it can be accessed. Once we have a grasp of this we can consider how it can be imported (see Chapter 8).

### 7.2 Data Frames

We've already seen how $R$ can store various kinds of data in vectors. But what happens if we have a mix of numeric and character values? One option is a list

```
a <- list(c(1, 2, 3), "Blue", factor(c("A", "B", "A", "B",
 "B")))
a
[[1]]
[1] 1 2 3
#
[[2]]
[1] "Blue"
#
```

```
[[3]]
[1] A B A B B
Levels: A B
```

Notice the [[]] here - this is the list element operator. A list in R can contain an arbitrary number of items (which can be vectors) which can be of different forms - here we have one numeric, one character, an one factor, and they are all of different lengths.

A list like this may not be something you are likely to want to use often, but in most of the work you will do in R , you will be working with data that is stored as a data frame - this is R's most common data structure. A data frame is a special type of list - it is a list of vectors that have the same length, and whose elements correspond to one another - i.e. the 4th element of each vector correspond. Think of it like a small table in a spreadsheet, with the columns corresponding to each vector, and the rows to each record.

There are several different ways to interact with data frames in R. "Built in" data sets are stored as data frames and can be loaded with the function data(). External data can be read into data frames with the function read.table() and its relative (as we'll see in the next chapter). Existing data can be converted into a data frame using the function data.frame().

```
cyl<-factor(scan(text= "6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4
 8 8 8 8 4 4 4 8 6 8 4"))
am<-factor(scan(text= "1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
 0 0 0 0 1 1 1 1 1 1 1'))
levels(am)<-c("auto","manual")
disp<-scan(text= "2.62 2.62 1.77 4.23 5.90 3.69 5.90 2.40 2.31
 2.75 2.75 4.52 4.52 4.52 7.73 7.54 7.21 1.29 1.24 1.17 1.97
 5.21 4.98 5.74 6.55 1.29 1.97 1.56 5.75 2.38 4.93 1.98")
hp<-scan(text= "110}110 93 110 175 105 245 62 95 123 123 180 180
->
 180 205 215 230 66 52 65 97 150 150 245 175 66 91 113 264 175
๑
 335 109")
```

Here we've re-created the data on cars that we used in the last chapter.

```
car <- data.frame(cyl, disp, hp, am)
head(car)
summary(car)
```

| \# cyl | disp |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\#$ | $4: 11$ | Min. | $: 1.170$ | Min. | : 52.0 |
| auto | am |  |  |  |  |


| \# $6: 7$ | 1st Qu.:1.978 | 1st Qu.: 96.5 | manual:13 |  |
| :--- | :--- | :--- | :--- | :--- |
| \# $8: 14$ | Median $: 3.220$ | Median :123.0 |  |  |
| \# |  | Mean $: 3.781$ | Mean $: 146.7$ |  |
| \# |  | 3rd Qu.:5.343 | 3rd Qu.:180.0 |  |
| \# |  | Max. $: 7.730$ | Max. $: 335.0$ |  |

Now we've created a data frame named car. The function head() shows us the first 6 rows (by default). Here we see that summary(), when called on a data frame, gives the appropriate type of summary for each variable. The variables within the data frame have names, and we can use the function names() to retrieve or change these.

```
names(car)
```

\# [1] "cyl" "disp" "hp" "am"
names (car) [4] <- "trans"
names (car)
\# [1] "cyl" "disp" "hp" "trans"
car\$am
\# NULL
car\$trans
\# [1] manual manual manual auto auto auto auto
\# [8] auto auto auto auto auto auto auto
\# [15] auto auto auto manual manual manual auto
\# [22] auto auto auto auto manual manual manual
\# [29] manual manual manual manual
\# Levels: auto manual

Data in data frames can be accessed in several ways. We can use the indexing operator [] to access parts of a data frame by rows and columns. We can also call variables in a data frame by name using the $\$$ operator.

```
car[1:3,]
car[, 3]
```

```
[1] 110 110
[14] 180 205 215 230 66 [15]
[27] 91 113 264 175 335 109
car$hp
[1] 110 110
[14] 180 205 215 230
[27] 91 113 264 175 335 109
```

Note that when indexing a data frame we use 2 indices, separated by a comma (e.g. $[2,3]$ ). Leaving one value blank implies "all rows" or "all columns". Here the first line gives us rows 1:3, the second and third both give us the hp variable.

Where we've created a new data frame in this way it is important to note that $R$ has copied the vectors that make up the data frame. So now we have hp and car\$hp. It is important to know this because if we change one, the other is not changed.

```
hp[1] == car$hp[1]
[1] TRUE
hp[1] <- 112
hp[1] == car$hp[1]
[1] FALSE
```

In a case like this, it might be a good idea to remove the vectors we used to make the data frame, just to reduce the possibility of confusion. We can do this using the function rm() .

```
ls()
[1] "a" "am" "car" "cyl" "disp" "hp"
rm(cyl, disp, hp, am)
ls()
[1] "a" "car"
```

Now these vectors are no longer present in our workspace.
It is useful to know that many R functions ( $\operatorname{lm}()$ for one) will accept a data argument - so rather than lm (car\$hp~car\$cyl) we can use lm(hp~cyl, data=car). When we specify more complex models, this is very useful. Another approach is to use the function with() - the basic syntax is with(some-data-frame, do-something) - e.g. with (car, plot(cyl,hp)).

### 7.2.1 Indexing Data Frames

Since our data car is a 2-dimensional object, we ought to use 2 indices. Using the incorrect number of indices can either cause errors or cause unpleasant surprises. For example, car [,4] will return the 4th column, as will car\$am or car [[4]]. However car[4] will also return the 4th column. If you had intended the 4th row ( $\operatorname{car}[4$,$] ) and forgotten the comma, this could cause$ some surprises.

```
car[[4]]
```

\# [1] manual manual manual auto auto auto auto
\# $[8]$ auto auto auto auto auto auto auto
\# [15] auto auto auto manual manual manual auto
\# [22] auto auto auto auto manual manual manual
\# [29] manual manual manual manual
\# Levels: auto manual

```
head(car[4])
```

However, if we use a single index greater than the number of columns in a data frame, R will throw an error that suggests we have selected rows but not columns.

```
car [5]
```

\# Error in `[.data.frame`(car, 5): undefined columns selected

Similarly, if we try to call for 2 indices on a one-dimensional object (vector) we get an "incorrect number of dimensions".
$\operatorname{car\$ hp}[2,3]$
\# Error in car\$hp[2, 3]: incorrect number of dimensions

In my experience, these are rather common errors (at least for me!), and you should recognize them.
The function subset() is very useful for working with dataframes, since it allows you to extract data from the dataframe based on multiple conditions, and it has an easy to read syntax. For example, we can extract all the records of the faithful data with eruptions less than 3 minutes long (summary () used here to avoid spewing data over the page).

```
data(faithful)
summary(subset(faithful, eruptions <= 3))
```

| \# | eruptions |  | waiting |  |
| :--- | :--- | :--- | ---: | :---: |
| \# | Min. $: 1.600$ | Min. $: 43.00$ |  |  |
| \# | 1st Qu. $: 1.833$ | 1st Qu.: | 1s0.00 |  |
| \# | Median $: 1.983$ | Median $: 54.00$ |  |  |
| \# | Mean $\quad: 2.038$ | Mean | $: 54.49$ |  |
| \# | 3rd Qu.:2.200 | 3rd Qu.:59.00 |  |  |
| \# | Max. $: 2.900$ | Max. $: 71.00$ |  |  |

### 7.3 Attaching data

Many R tutorials will use the function attach() to attach data to the search path in R. This allows us to call variables by name. For example, in this case we have our data frame car, but to get the data in hp we need to use car\$hp - any function that calls hp directly won't work - try mean(hp). If we use attach (car) then typing hp gets us the data, and function calls like mean (hp) will now work. There are (in my experience) 2 problems with this:
A) When attaching data, R makes copies of it, so if we change hp, the copy is changed, but the original data, car\$hp isn't changed unless we explicitly assign it to be changed - i.e. $\mathrm{hp}[2]=\mathrm{NA}$ is not the same as car\$hp [2]=NA. Read that again - hp is not necessarily the same as car\$hp! THIS IS A VERY GOOD REASON NOT TO ATTACH DATA.

```
attach(car)
The following objects are masked from car (pos = 3):
#
cyl, disp, hp, trans
The following objects are masked from car (pos = 5):
#
cyl, disp, hp, trans
```

```
The following objects are masked from car (pos = 6):
#
cyl, disp, hp, trans
The following objects are masked from car (pos = 7):
#
cyl, disp, hp, trans
mean(hp)
```

\# [1] 146.6875
$\mathrm{hp}[1]<-500$
$\mathrm{hp}[1]==\mathrm{car} \$ \mathrm{hp}[1]$

## \# [1] FALSE

B) In my experience it is not uncommon to have multiple data sets that have many of the same variable names (e.g. biomass). When attaching, these conflicting names cause even more confusion. For example, if we had not removed the vectors cyl, disp, and hp above, then when we try attach (car) R will give us this message:

```
The following object is masked _by_ .GlobalEnv:
```

cyl, disp, hp

For these reasons I view attach() as a convenience for demonstration of R use, and not as a "production" tool. I do not use (or only very rarely) attach(), and when I do I am sure to use detach() as soon as I am done with the data.

### 7.4 Changing Data Frames

Having imported or created a data frame it is likely that we may want to alter it in some way. It is rather simple to remove rows or columns by indexing -car<-car $[-31$,$] will remove the 31$ st row of the data and assign the data to its previous name. Similarly car [, 4] would remove the 4 th column (though here the changed data was not assigned).
It is also very simple to add new columns (or rows) to a data frame - simply index the row (or column) $\mathrm{n}+1$, where n is the number of rows (or columns).

Alternately, just specifying a new name for a variable can create a new column. Here we'll demonstrate both - to calculate a new variable, displacement per cylinder, we first need cylinders as numeric. We'll use the 'approved' method of converting a factor to numeric - indexing the levels (see Chapter 2).

```
car[, 5] <- as.numeric(levels(car$cyl)[car$cyl])
names(car)
[1] "cyl" "disp" "hp" "trans" "V5"
names(car)[5] <- "cyl.numeric"
```

Our data set now has 5 columns, but until we give the new variable a name it is just "V5", for 'Variable 5'. Let's calculate displacement per cylinder:

```
car$disp.per.cyl <- car$disp/car$cyl.numeric
names(car)
```

```
[1] "cyl" "disp" "hp"
```


# [1] "cyl" "disp" "hp"

# [4] "trans" "cyl.numeric" "disp.per.cyl"

```
[4] "trans" "cyl.numeric" "disp.per.cyl"
```

This method of creating a new variable is easier because we don't have to bother about the variable name, or about which column in will occupy. Had we used a numeric index of 5 , we would overwrite the value in that column.

Sometimes we might wish to combine 2 data frames together. We can do this using cbind() and rbind() (for column -wise and row -wise binding respectively). The dataset mtcars contains several variables that are not in our data frame cars. We'll use cbind() to combine the 2 data sets.

```
data(mtcars) # load the data
names(mtcars) # cols 1,5:8,10:11 not in our data
```

```
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"
```


# [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec"

# [8] "vs" "am" "gear" "carb"

dim(car)

```
\# [1] 326
```

car <- cbind(car, mtcars[, c(1, 5:8, 10:11)])
dim(car)

```
\# [1] 3213
head(car)

Note that the row names from mtcars have followed the variables from that data frame. A couple of observations about using adding to data frames: * Don't use cbind() if the rows don't correspond!- we'll see how to use merge() (Chapter 10) which is the right tool for this situation. (Similarly don't use rbind() if the columns don't correspond). * cbind() and rbind() are rather slow - don't use them inside a loop! * If you are writing a loop it is far more efficient to make space for your output (whether in a new data frame or by adding to one) before the loop begins, adding a row to your data frame in each iteration of a loop will slow your code down.

\subsection*{7.4.1 EXTRA: Comments}

There is an attribute of data frames that is reserved for comments. The function comment () allows one to set this. comment (car) will return NULL because no comment has been set, but we can use the same function to set comments.
```

comment(car) <- "A data set derived from the mtcars dataset.
Displacement is in liters"

```

Now we have added a comment to this dataset, and comment (car) will retrieve it.

\subsection*{7.5 Exercises}
1) Use the mtcars data (data(mtcars)) to answer these questions (if you get confused, review the bit on logical extraction in Chapter 1):
a) Which rows of the data frame contain cars that weigh more than 4000 pounds (the variable is wt, units are 1000 pounds).
b) Which cars are these? (Hint: since rows are named by car name, use row. names()).
c) What is the mean displacement (the variable isdisp, units are inches \({ }^{3}\)) for cars with at least 200 horsepower (hp)?
d) Which car has the highest fuel economy (the variable is mpg)?
e) What was the fuel economy for the Honda Civic?
2) Using the mtcars data create a new variable for horsepower per unit weight (hp/wt). Is this a better predictor of acceleration (qsec; seconds to complete a quarter mile) than raw horsepower? (Hint - check out correlations between these variables and acceleration, or fit regressions for both models).
3) Use the function subset () to return the cars with 4 cylinders and automatic transmissions \((a m=0)\). (Hint: use "\&" for logical "AND"; see ?Logic and select Logical Operators).

\section*{Chapter 8}

\section*{Importing Data}

\section*{Getting your data into \(R\)}

\subsection*{8.1 Introduction}

Now that we understand how data frames function in R we'll see how they can be created by importing data. Importing data into R can be a difficult process, and many R learners get stuck here and give up (I quit here several times myself!). In order to avoid getting stuck, we'll consider some of the problems that can arise. While this is among the shortest chapters in this book, I believe it is among the most important.

\subsection*{8.2 Importing Data}

The most universal way to import data into R is by using the function read.table() or one of it's derivatives (read.delim() and read.csv()) \({ }^{1}\). R can easily read three types of data files - comma separated values (.csv), tab delimited text (.txt), and space delimited text (.txt). (I've order them here in my order of preference - .csv files are usually the least troublesome). There are other ways to import data - reading data from the web, or from spreadsheet files. These are more advanced or limited to specific installations of R - for now we'll focus on the most common and useful tools.

Typical process:
1) clean up data in spreadsheet.

\footnotetext{
\({ }^{1}\) If you look at ?read.table you'll see that read. delim() and read.csv() are just versions of read.table() with different default values. They may be referred to as 'convenience functions'.
}
* a) replace empty cells with NA or other consistent string (absolutely critical for space-delimited files).
* b) fix column names (no spaces, no special characters, '? and '_' are OK).
* c) save as *.csv or *.txt. (Use File>Save as and select Comma separated values) 2) Try to import the data read.csv(...).
* a) if errors occur, open the .csv file in a text editor and find and remove problems (missing new lines, tabs, spaces or spurious quotation marks are common culprits) and repeat 1c) and 2). For this step is especially helpful to have the ability to see "invisible" characters - good text editors \({ }^{2}\) will do that.
3) Check the data - names (), dim(), and summary () are my favorite tools, but str () works also.

\subsection*{8.2.1 On Using the "Working directory"}

R wants to know where to save files and where to find files. When saving or opening files you can specify the complete file path (e.g "C:/Documents and Settings/EssentialR/my-file.R"), but this is not usually necessary. R will look for (or create) files by name in the working directory, which is just R speak for the folder you choose to have R use. Use getwd() to see what your working directory is. To change it use setwd("file/path/here"). Alternately, most R GUIs have a tool to do this - in RStudio go to "Session>Set Working Directory" and select the folder you want to use. The full command will show up in the console - it is a good idea to copy and paste this into your editor - now when you save your code, you have a note of where the working directory for that code is.

Note From here on, these notes assume that you are using the "Code Files" folder in your "EssentialR" directory as the working directory. Examples point to files in the "Data" directory in "EssentialR", so file paths will resemble ../Data/some-file.csv; the ../Data/ means "go up one level and find the folder called Data".

\subsection*{8.3 An Example}

First we'll examine this data in Excel. Open the file "W101-2010.xls". First we'll make sure there are no empty cells (use NA) for empty cells. Next we'll delete unnecessary or partial columns. Finally we'll save it as a .csv file. Now we can import it using the following code - set the file path

\footnotetext{
\({ }^{2}\) A good text editor is a wonderful tool. For Windows Notepad++ is the best I know of, but there may be better. On OSX I like Text Wrangler, on Linux Gedit or Geany work pretty well.
}
```

my.data <-
\hookrightarrow read.csv("~/Dropbox/R_Class/EssentialR/Data/W101-2010.csv",
comm = "\#", stringsAsFactors = TRUE)
my.data <- read.csv("../Data/W101-2010.csv", comm = "\#",
s stringsAsFactors = TRUE)
my.data <- read.csv(file.choose(), header = TRUE,
stringsAsFactors = TRUE) \# point the file selection dialog
@ to the `W101-2010.csv` file
my.data <- read.table("../Data/W101-2010.csv", header = TRUE,
sep = ",", quote = " \" ", stringsAsFactors = TRUE)

```

These are four nearly equivalent ways to read the same data! The first three are identical except for the way the file path is specified. Note that while the first way is a bit more cumbersome, it does have the advantage of keeping a full record of where the file came from. If you use the second form, it might be a good idea to include a note of the working directory (getwd() works for this) in your code. If you use the third, you really should note what the file was, or else when you come back to this in a year you won't know what file you read in (ask me how I know!). Also, note that the third method will fail to import correctly if there are comments in the data file, because we have not told R how to recognize comments.

The fourth method uses read.table() rather than read.csv(), so several other arguments need to be changed:
1) We don't need to specify a comment character, as "\#" is default 2) We need to specify the comma separator (\(s e p=", "\)) so each row is parsed into 7 columns as indicated by the location of commas in the text. 3) We need to specify the header= argument, because we want the variable names to be included. 4) We need to specify the quote= argument - the default is quote="\'" ", which means either a ' or a " can be interpreted as a quote. We replaced the default with quote="\"", meaning that a ' won't be treated as a quote. It is instructive to see what happens if we don't specify this - instead of 270 rows of data, we get 107 - there are a few records here that include an ', and if \(R\) thinks ' is a quote, all text between one ' and the next ' is treated as a quote, and so all separators (commas) and new line characters are ignored. In the quote="\"", the enclosing " " are there because R needs a quoted string for the argument. The \(\backslash\) is an escape character, so the " that follows it won't be treated as the closing ".

Note the argument, stringsAsFactors = TRUE. The default behavior (as of version 4.0) is that text variables (strings) are imported character variables, rather than being coerced to factors. In my examples, I want to convert these strings to factors, so I am overriding the default. An alternative would be to use the argument colClasses= to pass a vector of data types, though this would be unwieldy for datasets with many variables (columns).

\subsection*{8.4 An Easier Way (with Caveats!)}

RStudio has a nice built in data import tool. In the "Environment" browser toolbar (upper right pane) there is an icon for Import Dataset that features a rather nice dialog for importing data from Text files, from Excel, and from a few other file formats. Importantly this GUI tool writes the code for the action it completes, so it is trivial to copy the code into your document in the editor (so that you can document your work or compile your HW) and add any further arguments or code comments.
Most recent versions of RStudio allow you to specify whether to use readr or base for importing from a text file, so I encourage use of the Import Dataset dialog with Base \(\mathrm{R}^{3}\).

Figure 8.1: ImportDataSet
If you click on Import Dataset>From Text (base) and navigate to the W101-2010.csv file in the EssentialR/Data folder, the dialog brings up an import and preview tool.
You get a preview of the raw input file (top) and the way it will be converted to a data.frame (bottom). On the left are multiple arguments for read.csv(), so you can control things like header=, sep=, quote=, ect. This is very useful \(\mathrm{b} / \mathrm{c}\) you can easily see how changing these arguments will change how the data is imported. (For example, see what happens if you change sep= from comma to something else).

I held off presenting this until later in the chapter for two reasons:
1) I want to be sure you understand how read.table() works, because the troubleshooting described below may apply when using the GUI also.
2)When you use the Import Dataset dialog in RStudio, the code created includes View (my.data), which gives you a preview in RStudio. This is a great

\footnotetext{
\({ }^{3}\) This will work unless you have massive datasets - for very large data, read_table() will be preferable - readr creates tibbles which are a variant of the data.frame that will work on much larger data sets.
}

Figure 8.2: ImportDataPreview
way to check (though I would still use summary (my. data) as well!), but if you paste the code into your .R file and try to compile it, it will choke on View (). This is because View() opens a preview in RStudio, but the compilation is not really "in" RStudio.

\subsection*{8.5 Importing Other Data Types}

It is possible to import data files (.csv, etc) from websites, either via ftp or http, simply by replacing the file name with the URL. Note that this will not work with https sites, limiting its usefulness somewhat.

The package googlesheets provides tools to read and write data from googlesheets. This is pretty useful.

The packages xlsx and readxl allow for data to be imported from Microsoft Excel files, though it is worth noting that now one also has to take note of which worksheet is imported as well as which file.

There are also tools to allow data files from SAS, SPSS, etc - you can find information via Rseek.org.
There are also tools to import data from databases - see this page on Quick R for more information.

Finally note that write.table() functions to write R objects to text files, so your can export data as well. See ?write.table for more details.

\subsection*{8.6 Some Typical Problems}

I've already noted a couple of common issues (specifying the correct separator, header, and quote characters). Here I have a couple of examples to show what to look for when data import doesn't work.

Note Make sure your working directory is set to your "Code Files" folder.
```

setwd("~/Dropbox/R class/EssentialR/Code Files")
my.data <- read.table("../Data/Ex1.txt", header = TRUE)
dim(my.data)

```
```

summary(my.data)

```
\begin{tabular}{|c|c|c|}
\hline MeanDM & DMn & Jday \\
\hline \# Min. :380.0 & Min. :8 & Min. : 117.0 \\
\hline \# 1st Qu.:610.8 & 1st Qu.:8 & 1st Qu.:130.2 \\
\hline Median :673.8 & Median :8 & Median :137.0 \\
\hline \# Mean :689.2 & Mean : 8 & Mean :137.2 \\
\hline 3rd Qu.:794.1 & 3rd Qu.:8 & 3rd Qu.:146.0 \\
\hline \# Max. :984.0 & Max. : 8 & Max. : 155.0 \\
\hline \# DMse & & \\
\hline \# Min. \(: 27.66\) & & \\
\hline \# 1st Qu.:29.31 & & \\
\hline \# Median :31.65 & & \\
\hline \# Mean :39.50 & & \\
\hline \# 3rd Qu.:42.78 & & \\
\hline \# Max. :71.01 & & \\
\hline
\end{tabular}
my.data <- read.delim("../Data/Ex1.txt", header = TRUE)
dim(my.data)
\# [1] 74
summary (my.data)
\begin{tabular}{lcc}
\# & MeanDM & \multicolumn{1}{c}{ DMn } \\
\# & Length:7 & Length:7 \\
\# & Class :character & Class :character \\
\# & Mode :character & Mode :character \\
\# & Jday & DMse \\
\# & Length:7 & Length:7 \\
\# & Class :character & Class :character \\
\# & Mode :character & Mode :character
\end{tabular}

These two are different even though the same data was read - why? Hint Look at ?read.table and note the default settings for comment.character.
Occasionally there are small problems with the file that you can't see in Excel. The file "Ex2.txt" has a missing value with no NA.
```


## my.data <- read.table("../Data/Ex2.txt", header = TRUE)

# produces an error

my.data <- read.table("../Data/Ex2.txt", header = TRUE, sep =
@ "\t")

```
```


# no error message, *BUT* --->

dim(my.data)

# [1] 6 4

summary(my.data)

# MeanDM DMn Jday

# Min. :380.0 Min. :8 Min. :117

# 1st Qu.:610.8 1st Qu.:8 1st Qu.:137

# Median :673.8 Median :8 Median :137

# Mean :689.2 Mean :8 Mean :139

# 3rd Qu.:794.1 3rd Qu.:8 3rd Qu.:149

# Max. :984.0 Max. :8 Max. :155

# NA's :1

# DMse

# Min. :27.66

# 1st Qu.:29.31

# Median :31.65

# Mean :39.50

# 3rd Qu.:42.78

# Max. :71.01

# 

# but an NA was introduced. *Lack of errors is not

# proof that everything worked correctly*

```

Naive use of read.table() generates an error because the default value of sep=" " does not detect the missing value, which leads to one line having fewer elements than the others (thus the error). Telling R to use a tab (sep="/t") cures this problem because the missing value can now be detected, but there is a missing value in the data (which is correct in this case).

We could just use read.delim() since it looks for tab-delimiters, but we may need to specify the comment. char argument.
```

my.data <- read.delim("../Data/Ex2.txt", header = TRUE)
head(my.data)
my.data <- read.delim("../Data/Ex2.txt", header = TRUE,
@ comment.char = "\#")
my.data <- read.delim("../Data/Ex2.txt", header = TRUE, comm =
@ "\#")
dim(my.data)

```
```


# [1] 6 4

summary(my.data)

# MeanDM DMn Jday

# Min. :380.0 Min. :8 Min. :117

# 1st Qu.:610.8 1st Qu.:8 1st Qu.:137

# Median :673.8 Median :8 Median :137

# Mean :689.2 Mean :8 Mean :139

# 3rd Qu.:794.1 3rd Qu.:8 3rd Qu.:149

# Max. :984.0 Max. :8 Max. :155

# NA's :1

# DMse

# Min. :27.66

# 1st Qu.:29.31

# Median :31.65

# Mean :39.50

# 3rd Qu.:42.78

# Max. :71.01

# 

```

Can you see why the comm="\#" was added?
Another common problem is adjacent empty cells in Excel - an empty cell has had a value in it that has been deleted, and is not the same as a blank cell 4 .These will create an extra delimiter (tab or comma) in the text file, so all rows won't have the same number of values. A really good text editor will show you this kind of error, but when in doubt reopen your .csv file in Excel, copy only the data and paste it into a new tab and re-save it as a .csv file. The file "Ex3.txt" includes an error like this. Note that when it is saved as a .csv file this error is visible - this is why .csv files are preferred.

Another problem to watch for is leading quotes - in some cases Excel decides that a line that is commented is actually text and wraps it in quotes. This is invisible in Excel, so you don't know it has happened. When read into R, the leading " causes the comment character (by default \#) to be ignored. You can usually diagnose this if you open the .csv or .txt file in a text editor rather than in Excel.
```

my.data <- read.table("../Data/Ex3.txt", header = TRUE)

## my.data <- read.table("../Data/Ex3.txt", header = TRUE, sep =

@ "\t") \# produces an error

## my.data <- read.delim("../Data/Ex3.txt", header = TRUE,

\hookrightarrow comment.char = "\#") \# no error
head(my.data) \# but wrong

```

\footnotetext{
\({ }^{4}\) This is one example of why you should use R whenever possible!
}
rer
The first line did not produce an error, since the separator is " " (white space). The second line produced an error because of the extra tab. The third line did not give an error message but the data was not imported correctly - the extra tab created a 5th column (with all NAs), but the 4 names were assigned to the last 4 columns, and the values of MeanDM were used for row.names.

Note If you have numeric data that has thousands separators (e.g. 12,345,678) then you will run into trouble using .csv files (with comma separators). There are several ways to address this problem, but I think the easiest is to change the number format in Excel before creating the .csv file. To do this highlight the cells and choose "number" as the format.

\subsection*{8.7 Exercises}
1) Find (or invent) some data (not from the "Data" directory supplied with EssentialR) and import it into R. (It is not a bad idea to include a commented line with units for each variable in your .txt or.csv file). a) What did you have to do to "clean it up" so it would read in? b) Are you satisfied with the console output of summary (yourdata)? Did all the variables import in the way (format) you thought they should? c) Include the output of summary (yourdata) and head(yourdata).
2) The spreadsheet "StatesData.xls" located in the Data directory in your EssentialR folder contains some (old) data about the 50 US states, and includes a plot with a regression line. Clean this data up and import it into R. You should be able to fit a regression that mimics the plot in the spreadsheet. What is the p -value for the slope in this regression?

\section*{Chapter 9}

\section*{Manipulating Data}

\section*{An introduction to data wrangling}

\subsection*{9.1 Introduction}

Often you find that your data needs to be reconfigured in some way. Perhaps you recorded some measurement in two columns, but you realize it really should be a single variable, maybe the total or mean of the two, or a single value conditioned on another value. Or perhaps you want to make some summary figures, like barplots, that need group means. Often you might be tempted to do this kind of work in Excel because you already know how to do it. However, if you already have the data in R, it is probably faster to do it in R! Even better, when you do it in R it is really reproducible in a way that it is not in Excel.

\subsection*{9.2 Summarizing Data}

Frequently we want to calculate data summaries - for example we want to plot means and standard errors for several subsets of a data set \({ }^{1}\). R has useful tools that make this quite simple. We'll look first that the apply () family of functions, and then at the very useful aggregate (). Fist we'll demonstrate with some data from a study where beans were grown in different size containers \({ }^{2}\). In this study bean plants were grown in varying sized pots (pot.size) and either one or two doses of phosphorus (P.lev), resulting in varying concentrations of phosphorus (phos). Root length and root and shoot biomass were measured.

\footnotetext{
\({ }^{1}\) Excel users will think "Pivot Table".
\({ }^{2}\) The data are a simplified form of that reported in: Nord, E. A., Zhang, C., and Lynch, J. P. (2011). Root responses to neighboring plants in common bean are mediated by nutrient concentration rather than self/non-self recognition. Funct. Plant Biol. 38, 941-952.
}
```


## beans <- read.csv("Data/BeansData.csv", header = TRUE, comm =

@\#",
beans <- read.csv("../Data/BeansData.csv", header = TRUE,
comm = "\#", stringsAsFactors = TRUE)
dim(beans)

```
\# [1] 248
summary (beans)
\begin{tabular}{|c|c|c|c|c|}
\hline \# & pot.size & phos P & P.lev rep & trt \\
\hline \# & Min. : 4 & Min. : 70.0 H & H:12 A:6 & a:4 \\
\hline \# & 1st Qu.: 4 & 1st Qu.:105.0 L & L: 12 B: 6 & b:4 \\
\hline \# & Median : 8 & Median :175.0 & C: 6 & c: 4 \\
\hline \# & Mean : 8 & Mean :192.5 & D: 6 & d:4 \\
\hline \# & 3rd Qu.:12 & 3rd Qu.:210.0 & & e:4 \\
\hline \# & Max. :12 & Max. : 420.0 & & f:4 \\
\hline \# & rt.len & ShtDM & Rt & M \\
\hline \# & Min. \(: 146.2\) & 2 Min. 00.5130 & 0 Min. & :0.4712 \\
\hline \# & 1st Qu.:243.3 & 3 1st Qu.:0.8065 & 5 1st Qu. & :0.6439 \\
\hline \# & Median :280.4 & 4 Median :1.0579 & 9 Median & :0.7837 \\
\hline \# & Mean :301.3 & 3 Mean :1.1775 & 5 Mean & :0.8669 \\
\hline \# & 3rd Qu.:360.3 & 3rd Qu.:1.3159 & 9 3rd Qu. & :0.9789 \\
\hline & Max. :521.7 & Max. 2.7627 & 7 Max & 751 \\
\hline
\end{tabular}

The "apply" family of functions are used to "do something over and over again to a subset of some data" (apply a function to the data in R-speak). For example we can get means for columns of data:
```

apply(X = beans[, 6:8], MARGIN = 2, FUN = mean, na.rm = TRUE)

| \# | rt.len | ShtDM | RtDM |
| :--- | ---: | ---: | ---: |
| \# | 301.3179167 | 1.1774750 | 0.8668583 |

```

Here we have applied the function mean() to the columns (MARGIN=2) 6,7,8 (\(6: 8\)) of beans (columns 3,4, and 5 are factors, somean() will give an error, causing apply (\(\mathrm{X}=\) beans \(, \mathrm{MARGIN}=2, \mathrm{FUN}=\) mean, na. \(\mathrm{rm}=\) TRUE) to fail).
Note that we've also specified na.rm=TRUE - this is actually an argument to mean(), not to apply(). If you look at ?apply you'll find ... among the arguments. This refers to arguments that are passed to the function specified by FUN. (which in this case is mean()). Many R functions allow . . . arguments, but they are initially confusing to new users.

In this case there is no missing data, but it is a worthwhile exercise to make a copy of the beans data and introduce an NA so you know what happens when there are missing values in the data.

Often we want to summarize data to get group means, for example we want the means for each treatment type.
```

tapply(beans$rt.len, INDEX = list(beans$trt), FUN = mean,
na.rm = TRUE)

```
\begin{tabular}{lrrcrrr}
\# & a & b & c & d & e & f \\
\# & 255.2925 & 400.2000 & 178.8750 & 436.2800 & 226.7575 & 310.5025
\end{tabular}

In this case, it was easy because there was a variable (trt) that coded all the treatments together, but we don't really need it:
```

tapply(beans$rt.len, list(beans$pot.size, beans\$P.lev), mean,
na.rm = TRUE)

```
```


# H L

# 4 400.2000 255.2925

# 8 436.2800 178.8750

# 12 310.5025 226.7575

```

This gives us a tidy little table of means \({ }^{3}\). If we just wanted a more straightforward list we can use paste() to make a combined factor.
```

tapply(beans$rt.len, list(paste(beans$pot.size, beans\$P.lev)),
mean, na.rm = TRUE)

```
\begin{tabular}{lrrrrrr}
\# & 12 H & 12 L & 4 H & 4 L & 8 H & 8 L \\
\# & 310.5025 & 226.7575 & 400.2000 & 255.2925 & 436.2800 & 178.8750
\end{tabular}

Often we really want to get summary data for multiple columns. The function aggregate() is a convenience form of apply that makes this trivially easy.

In a call to aggregate() we must specify \(x=\) : the variable or variables to summarize, by=: a list of one or more grouping variables that form the groups that will be summarized, and \(\mathrm{FUN}=, \ldots\), : the summarizing function to use, and . additional arguments for the function specified in FUN=, such as na.rm=TRUE.

\footnotetext{
\({ }^{3}\) If we were summarizing by three variables rather than two we would get 3-d matrix instead of a 2-d table as output.
}

The following example will calculate means for three variables over groups defined by two variables. As above, the na.rm=TRUE is an argument to mean(). Here I have used with (beans,) for this call to aggregate() simply to avoid adding beans \(\$\) before each of the 5 variables named in this call.
```

with(beans, aggregate(x = cbind(rt.len, ShtDM, RtDM), by =
@ list(pot.size,
phos), FUN = mean, na.rm = TRUE))

```
aggregate() is pretty flexible about how variables are passed to it. The following will produce equivalent results, though sometimes with minor differences in column names in the output
```


# calling variables by number:

aggregate(x = beans[, 6:8], by = list(beans[, 1], beans[,
2]), FUN = mean, na.rm = TRUE)
aggregate(x = beans[, 6:8], by = beans[1:2], FUN = mean, na.rm =
TRUE) \# most compact call and has correct names, but hard to
@ read.

# calling variables by name, but adding different

# variable names:

with(beans, aggregate(x = list(RL = rt.len, SDM = ShtDM, RDM =
RtDM),
by = list(PotSize = pot.size, Phos = phos), FUN = mean,
na.rm = TRUE))

# variables by name, w/o use of with()

aggregate(x = list(RL = beans$rt.len, SDM = beans$ShtDM, RDM =
b beans$RtDM),
    by = list(PotSize = beans$pot.size, Phos = beans$phos),
    FUN = mean, na.rm = TRUE)
aggregate(x = cbind(beans$rt.len, beans$ShtDM, beans$RtDM),
by = list(beans$pot.size, beans$phos), FUN = mean, na.rm =
TRUE)
aggregate(x = data.frame(RL = beans$rt.len, SDM = beans$ShtDM,
RDM = beans$RtDM), by = list(PotSize = beans$pot.size,
Phos = beans\$phos), FUN = mean, na.rm = TRUE)

# but by= must be a list:

aggregate(x = data.frame(RL = beans$rt.len, SDM = beans$ShtDM,
RDM = beans$RtDM), by = cbind(PotSize = beans$pot.size,
Phos = beans\$phos), FUN = mean, na.rm = TRUE)

```

Note that aggregate() also has a formula interface \({ }^{4}\) which you may see used

\footnotetext{
\({ }^{4}\) For the 'formula' form of aggregate() we specify \(\mathrm{x} \sim \mathrm{g}\), data=, FUN=,..., where x is the variable (or variables) to be summarized, g is the grouping variable (or variables), data=
}
on occasion. I don't prefer it because it does not handle missing values as well 5.

We'll also extract the standard deviations for each group.
```

with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =
list(PotSize = pot.size,
Phos = phos), FUN = sd, na.rm = TRUE))

```

What if we want to specify a FUN that doesn't exist in R? Simple - we write our own. For example, we might want to calculate the standard error of the mean (SEM) for our beans data.

Recall that the SEM is given by \(S E M_{x}=\frac{\sigma_{x}}{\sqrt{(n)}}\)
```

with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =
@ list(PotSize = pot.size,
Phos = phos), function(x) (sd(x, na.rm = TRUE)/(sum(is.na(x)
G=
FALSE))^0.5)))

```

Notice this is the same as our first example using mean() except we've defined a new function to calculate SEM. We could also begin by first defining a function: \(\operatorname{SEM}=\) function \((x)\}\), with the definition of the function between the \(\}\). Having done that, and then just use FUN=SE in our call to aggregate (This code is not run, but produces the same output).
```

SEM = function(x) {
sd(x, na.rm = TRUE)/(sum(is.na(x) == FALSE)^0.5)
} \# create function 'SEM'
with(beans, aggregate(cbind(rt.len, ShtDM, RtDM), by =
list(PotSize = pot.size,
Phos = phos), FUN = SEM))

```

This is a good example of something I have to look up in my "R Tricks"" file. It is also an example of how lines of R code can get really long (and why auto balancing of parentheses is really nice)! Adding spaces is OK. Also worth noting in this example - since there is no na.rm=TRUE argument for length(), we need to find another way to ensure any NA values aren't counted in the denominator.

\footnotetext{
points to the data.frame containing our data. \(F U N=\) and . . are as noted above. A formula call equivalent to the above would be: aggregate(cbind(rt.len,ShtDM,RtDM) ~ pot.size + phos, data=beans,FUN=mean,na.rm=TRUE)
\({ }^{5}\) When aggregate() is used with more than one variable before the \(\sim\) (i.e. when we use cbind() before the \(\sim\)), all cases (rows) containing an NA are removed, even if there is an NA in only one of the variables being included. This can result in different output between the \(\mathrm{x}=, \mathrm{by}=, \mathrm{FUN}=\) and the \(\mathrm{x} \sim \mathrm{g}\), data=, \(F U N=\) forms of aggregate(\((\).
}

It is easy to see how useful summaries like this could be - let's make a plot from this.
```

beans.means <- with(beans, aggregate(cbind(rt.len, ShtDM,
RtDM), by = list(PotSize = pot.size, Phos = phos), FUN =
mean,
na.rm = TRUE))
barplot(beans.means\$ShtDM)

```


If we don't like the order of the bars here we can use the function order () to sort our data (beans.means) for nicer plotting. order () is a bit confusing the first time you see it - all it does is return the order the elements in a vector need to be put in to be sorted. So, order \((c(5,6,4))\) will return \(2,3,1\). This means that order() works wonderfully inside the [], because when placed there it causes sorting to happen.
```

beans.means <- beans.means[order(beans.means$PotSize,
beans.means$Phos),
]
barplot(beans.means\$ShtDM)

```


Now we'll add the labels and legend - we'll discuss these in more detail in later lessons.
```

barplot(beans.means$ShtDM, col=c("white","grey70"), names.arg=
    paste(beans.means$PotSize,beans.means\$Phos,sep="\n"),ylab=
"Shoot biomass (g)")
legend("topright",fill=c("white","grey70"),legend=c("LP","HP"))

```


You can see that \(R\) gives us powerful tools for data manipulation.

\subsection*{9.3 Reformatting Data from "Wide" to "Long"}

Sometimes we record and enter data in a different format than that in which we wish to analyze it. For example, I might record the biomass from each of several replicates of an experiment in separate columns for convenience. But when I want to analyze it, I need biomass as a single column, with another column for replicate. Or perhaps I have biomass as a single column and want to break it into separate columns. The R functions stack() and unstack() are a good place to begin.
```

data(PlantGrowth)
head(PlantGrowth)

```

We have 2 variables: weight and group. We can use unstack() to make one column for each level of group.
```

unstack(PlantGrowth)
pg <- unstack(PlantGrowth, weight ~ group)
boxplot(pg)

```


This can be useful for plotting (though in this case boxplot (weight~group, data=PlantGrowth) would work equally well). We can use stack() to go the other way.
```

summary(stack(pg))

# values ind

# Min. :3.590 ctrl:10

# 1st Qu.:4.550 trt1:10

# Median :5.155 trt2:10

# Mean :5.073

# 3rd Qu.:5.530

# Max. :6.310

summary(stack(pg, select = c(trt1, trt2)))

# values ind

# Min. :3.590 trt1:10

# 1st Qu.:4.620 trt2:10

# Median :5.190

# Mean :5.093

# 3rd Qu.:5.605

# Max. :6.310

summary(stack(pg, select = -ctrl))

# values ind

# Min. :3.590 trt1:10

# 1st Qu.:4.620 trt2:10

# Median :5.190

# Mean :5.093

# 3rd Qu.:5.605

# Max. :6.310

```

Notice that we can use the select argument to specify or exclude columns when we stack.

Suppose we're interested in comparing any treatment against the control with the PlantGrowth data. We've already seen how this can be done using the function levels(). There are three levels, but if we reassign one of them we can make 2 levels.
```

levels(PlantGrowth\$group)

```
```


# [1] "ctrl" "trt1" "trt2"

```
```

PlantGrowth$group2 <- factor(PlantGrowth$group)
levels(PlantGrowth\$group2) <- c("Ctrl", "Trt", "Trt")
summary(PlantGrowth)

```
weight group group2
```


# weight group group2

# Min. :3.590 ctrl:10 Ctrl:10

# Min. :3.590 ctrl:10 Ctrl:10

# 1st Qu.:4.550 trt1:10 Trt :20

# 1st Qu.:4.550 trt1:10 Trt :20

# Median :5.155 trt2:10

# Median :5.155 trt2:10

# Mean :5.073

# Mean :5.073

# 3rd Qu.:5.530

# 3rd Qu.:5.530

# Max. :6.310

```
```


# Max. :6.310

```
```

```
unstack(PlantGrowth, weight ~ group2)
$Ctrl
[1] 4.17 5.58 5.18 6.11 4.50 4.61 5.17 4.53 5.33 5.14
#
$Trt
[1] 4.81 4.17 4.41 3.59 5.87 3.83 6.03 4.89 4.32 4.69
[11] 6.31 5.12 5.54 5.50 5.37 5.29 4.92 6.15 5.80 5.26
```

We can even use unstack() to split weight based on group2, but the output is different as the groups aren't balanced.

### 9.4 Reshape

For more sophisticated reshaping of data the package "reshape" ${ }^{6}$ has powerful tools to reshape data in many ways, but it takes some time to read the documentation and wrap your head around how it works and what it can do.

Basically there are 2 functions here - melt() and cast() (think working with metal) - once you 'melt' the data you can 'cast' it into any shape you want. melt () turns a data set into a series of observations which consist of a variable and value, and dcast () reshapes melted data, 'casting' it into a new form. You will probably need to install reshape - either from the 'Packages' tab or via install.packages("reshape") ${ }^{7}$. We'll demonstrate with the built in data set iris, and we'll need to create a unique identifier for each case in the data set.

[^21]```
library(reshape)
data(iris)
iris$id <- row.names(iris)
head(melt(iris, id = "id"))
tail(melt(iris, id = "id"))
melt.iris <- melt(iris, id = c("id", "Species"))
dim(melt.iris)
```

\# [1] 6004
head(melt.iris)
tail(melt.iris)

Now instead of 150 observations with 6 variables we have 600 observations with 4 variables. We can cast this data using cast (). If we specify enough columns from our melted data to account for all the data, then we don't need to specify a fun.aggregate - a function with which to aggregate, but we can aggregate the data easily,and with more flexibility than by using aggregate:

```
cast(melt.iris, Species ~ variable, mean)
cast(melt.iris, Species ~ variable, max)
```

We can get our original data back.

```
head(cast(melt.iris, Species + id ~ variable))
```

But we can also do other types of reshaping. For example, what if we wanted to separate out Sepal and Petal variables for each record? We can use strplit() to split the stings that represent variables, e.g. "Sepal.Width".

```
head(strsplit(as.character(melt.iris$variable), split = ".",
    fixed = TRUE))
# [[1]]
# [1] "Sepal" "Length"
#
# [[2]]
# [1] "Sepal" "Length"
#
# [[3]]
# [1] "Sepal" "Length"
```

```
#
# [[4]]
# [1] "Sepal" "Length"
#
# [[5]]
# [1] "Sepal" "Length"
#
# [[6]]
# [1] "Sepal" "Length"
```

Notice that this returns a list. We'll have to use do.call() to call rbind() on the list to bind the list elements into a data frame.

```
head(do.call(rbind, strsplit(as.character(melt.iris$variable),
    split = ".", fixed = TRUE)))
# [,1] [,2]
# [1,] "Sepal" "Length"
# [2,] "Sepal" "Length"
# [3,] "Sepal" "Length"
# [4,] "Sepal" "Length"
# [5,] "Sepal" "Length"
# [6,] "Sepal" "Length"
```

Now this seems a bit esoteric, but we can use cbind() to bind these values to our melted iris data

```
melt.iris <- cbind(melt.iris, do.call(rbind,
strsplit(as.character(melt.iris$variable),
    split = ".", fixed = TRUE)))
names(melt.iris)[5:6] <- c("Part", "Dimension")
head(melt.iris)
```

Now we can see that we have separated the flower parts (Sepal or Petal) from the dimensions.

```
cast(melt.iris, Species ~ Dimension | Part, mean)
# $Petal
# Species Length Width
# 1 setosa 1.462 0.246
# 2 versicolor 4.260 1.326
# 3 virginica 5.552 2.026
```

```
#
# $Sepal
# Species Length Width
# 1 setosa 5.006 3.428
# 2 versicolor 5.936 2.770
# 3 virginica 6.588 2.974
cast(melt.iris, Species ~ Dimension + Part, mean)
```

So we can talk about the mean Length and Width, averaged over floral parts. In this case it may not make sense to do so, but it demonstrates the type of data reconfiguration that is possible.

```
cast(melt.iris, Species ~ Dimension, mean)
```

We can still go back to the original data by just casting the data in a different form:
head(cast(melt.iris, Species + id ~ Part + Dimension))

The package reshape adds important tools to the R data manipulation toolkit. While they may be a bit tricky to learn, they are very powerful. See ?cast for more examples.

9.5 Merging Data Sets

Another data manipulation task is merging two data sets together. Perhaps you have field and laboratory results in different files, and you want to merge them into one file. Here we'll use an example from the merge() help file.

```
authors <- data.frame(surname = c("Tukey", "Venables", "Tierney",
    "Ripley", "McNeil"), nationality = c("US", "Australia",
    "US", "UK", "Australia"), deceased = c("yes", rep("no",
    4)))
books <- data.frame(name = c("Tukey", "Venables", "Tierney",
    "Ripley", "Ripley", "McNeil", "R Core"), title = c("Expl.
    Data Anal.",
    "Mod. Appl. Stat ...", "LISP-STAT", "Spatial Stat.", "Stoch.
    @ Simu.",
    "Inter. Data Anal.", "An Intro. to R"), other.author = c(NA,
    "Ripley", NA, NA, NA, NA, "Venables & Smith"))
authors
books
```

We've created 2 small data frames for demonstration purposes here. Now we can use merge() to merge them.

```
(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
```

Notice that the order of the columns mirrors the order of columns in the function call - in the first line we asked for authors, books and the columns are the three columns of authors and the all but the first column of books, because that column (name) is the by.y column. If both data frames had the column surname we could just say by=surname. Notice that "R core" (books[7,]) is not included in the combined data frame - this is because it does not exist in both of them. We can override this, but NAs will be introduced. Also note that by, by. x and by. y can be vectors of more than one variable -useful for complex data sets.

```
merge(authors, books, by.x = "surname", by.y = "name", all =
TRUE)
```

This is a good example of something that is much easier to do in R than in Excel.

9.6 More about Loops

Sometimes we want to have R do something over and over again. Often a loop is the simplest ${ }^{8}$ way to do this. AS we saw earlier the general syntax for a loop in R is: for (index) \{do something\}.

The curly braces are optional if it fits on one line, but required if it goes over one line.

Here are a couple of examples:

```
for (i in 1:5) print(i)
```

\# [1] 1
\# [1] 2
\# [1] 3
\# [1] 4
\# [1] 5

[^22]```
x <- c(2, 5, 7, 23, 6)
for (i in x) {
 cat(paste("i^2=", i^2, "\n"))
}
```

\# i~2= 4
\# $\mathrm{i}^{\wedge} 2=25$
\# $\mathrm{i}^{\wedge} 2=49$
\# $i^{\wedge} 2=529$
\# i^2= 36

Another example might be converting multiple numeric columns to factors. Imagine we wanted to convert columns 3,5 , and 6 of a data frame from numeric to factor. We could run (nearly) the same command three times:

```
df[,3]=factor(df[,3]); df[,5]=factor(df[,5]);
df[,6]=factor(df[,6]);
```

However, particularly if we have more than two columns that need to be converted it may be easier to use a loop - just use the vector of the columns to be converted as the index:

```
for(i in c(3,5,6)) df[,i]<-factor(df[,i])
```

Loops can be used in many ways - for example the code we used to plot shoot biomass could be put in a loop to plot all the response variables in the data.

```
par(mfrow=c (3,1),mar=c (3,3,0.5,0.5))
for (p in c(4,5,3)){
 barplot(beans.means[,p], col=rep(c("white","grey70"),times=3),
 names.arg=paste(beans.means$PotSize,beans.means$Phos, sep="\n"))
 # plot the pth column of beans.means
 }
```



Obviously, this plot isn't perfect yet, but it is good enough to be useful. Note by convention, the code inside a loop is indented to make it easier to see where a loop begins and ends.

### 9.7 Exercises

1) Load the data set "ufc" (the file is ufc.csv). This data shows diameter at breast height (Dbh) and Height for forest trees. Can you use unstack() to get the diameter data for white pine (WP)? Start by unstacking all the diameter data. Can you also get this data by logical extraction? (Hint: use the function which(). If you really only wanted the data for one species logical extraction would probably be better.)
2) For the data set ufc find the mean Dbh and Height for each species. (Hint: aggregate is your friend for more than one response variable.)
3) Make a barplot showing these mean values for each species. Use beside $=$ TRUE (stacking two different variables wouldn't make sense. . .). (Hint: this will be easier if you make a new variable for the means from Q2. Look at ?barplot for the data type "height" must have - as.matrix() can be used to make something a matrix.)
4) The barplot in Q3 suggests a fair correlation between Dbh and height. Plot Height $\sim \mathrm{DBH}$, fit a regression, and plot the line. What is the $\mathrm{R}^{2}$ ?

## Chapter 10

## Working with multiple variables

## Some basic tools for multivariate data

### 10.1 Introduction

Now that we've discussed the data frame in R, and seen how data can be imported, we can begin to practice working with multiple variables. Rather than a full introduction to multivariate methods, here we'll cover some basic tools.

### 10.2 Working with Multivariate Data

Working with more than two variables becomes more complex, but many of the tools we've already learned can also help us here. We'll use the mtcars data we referred to in the Chapters $4 \& 5$, but now we'll load it directly.

```
data(mtcars)
summary(mtcars)
\begin{tabular}{|c|c|c|c|}
\hline \# & mpg & cyl & disp \\
\hline \# & Min. : 10.40 & Min. 4.000 & Min. : 71.1 \\
\hline \# & 1st Qu.:15.43 & 1st Qu.:4.000 & 1st Qu.:120.8 \\
\hline \# & Median :19.20 & Median :6.000 & Median :196.3 \\
\hline \# & Mean :20.09 & Mean :6.188 & Mean :230.7 \\
\hline & 3rd Qu.:22.80 & 3rd Qu.:8.000 & 3rd Qu.:326 \\
\hline
\end{tabular}
```

| \# | $\begin{gathered} \text { Max. } \quad: 33.90 \\ \mathrm{hp} \end{gathered}$ | $\begin{gathered} \text { Max. } \quad: 8.000 \\ \text { drat } \end{gathered}$ | $\begin{gathered} \text { Max. } \quad: 472.0 \\ \\ \text { wt } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| \# | Min. : 52.0 | Min. $: 2.760$ | Min. 1.513 |
| \# | 1st Qu.: 96.5 | 1st Qu.:3.080 | 1st Qu.:2.581 |
| \# | Median :123.0 | Median :3.695 | Median :3.325 |
| \# | Mean :146.7 | Mean :3.597 | Mean :3.217 |
| \# | 3rd Qu.:180.0 | 3rd Qu.:3.920 | 3rd Qu.:3.610 |
| \# | Max. :335.0 | Max. :4.930 | Max. 5.424 |
| \# | qsec | vs | am |
| \# | Min. $: 14.50$ | Min. 00.0000 | Min. 00.0000 |
| \# | 1st Qu.:16.89 | 1st Qu.:0.0000 | 1st Qu.:0.0000 |
| \# | Median :17.71 | Median :0.0000 | Median :0.0000 |
| \# | Mean :17.85 | Mean :0.4375 | Mean :0.4062 |
| \# | 3rd Qu.:18.90 | 3rd Qu.:1.0000 | 3rd Qu.:1.0000 |
| \# | Max. $: 22.90$ | Max. :1.0000 | Max. :1.0000 |
| \# | gear | carb |  |
| \# | Min. 3.000 | Min. 1.000 |  |
| \# | 1st Qu.:3.000 | 1st Qu.:2.000 |  |
| \# | Median :4.000 | Median :2.000 |  |
| \# | Mean :3.688 | Mean :2.812 |  |
| \# | 3rd Qu.:4.000 | 3rd Qu.:4.000 |  |
| \# | Max. 5.000 | Max. :8.000 |  |

If you look at the "Environment" tab in RStudio you should now see mtcars under "Data". We'll convert some of this data to factors, since as we discussed before, the number of cylinders, transmission type (and number of carburetors, $\mathrm{V} / \mathrm{S}$, and number of forward gears) aren't really continuous.

```
for (i in c(2, 8, 9, 10, 11)) {
 mtcars[, i] = factor(mtcars[, i])
}
names(mtcars)[9] <- "trans"
levels(mtcars$trans) <- c("auto", "manual")
summary(mtcars)
```

| \# | mpg | cyl | disp | hp |
| :---: | :---: | :---: | :---: | :---: |
| \# | Min. $: 10.40$ | 4:11 | Min. : 71.1 | Min. : 52.0 |
| \# | 1st Qu.:15.43 | 6: 7 | 1st Qu.:120.8 | 1st Qu.: 96.5 |
| \# | Median :19.20 | 8:14 | Median :196.3 | Median :123.0 |
| \# | Mean :20.09 |  | Mean :230.7 | Mean :146.7 |
| \# | 3rd Qu.:22.80 |  | 3rd Qu.:326.0 | 3rd Qu.:180.0 |
| \# | Max. :33.90 |  | Max. $: 472.0$ | Max. :335.0 |
| \# | drat |  | wt | sec |
| \# | Min. 22.760 | Min. | :1.513 Min. | :14.50 0:18 |
| \# | 1st Qu.:3.080 | 1st | .:2.581 1st | :16.89 1:14 |



Notice the for () \{\} loop here; just as we saw in the last chapter this is faster than writing 5 lines of code. I prefer to have informative factor names, so we'll change that, and then check summary () to make sure it is all OK.

Note that we could achieve the same result using the list version of apply(), lapply(). This will run faster, but the code is slightly longer than the loop version above.

```
mtcars[, c(2, 8, 9, 10, 11)] <- lapply(mtcars[, c(2, 8, 9,
 10, 11)], FUN = function(x) (factor(x)))
```

In the last lesson we used table() for two-way tables, but we can also use it for three-way tables.

```
with(mtcars, table(carb, cyl, trans))
```

```
, , trans = auto
#
cyl
carb 4 6 8
1120
2 2 0 4
3003
40 2 5
6 0 0 0
8 0 0 0
#
, , trans = manual
#
cyl
carb 4 6 8
1400
```

| $\#$ | 2 | 4 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $\#$ | 3 | 0 | 0 | 0 |
| $\#$ | 4 | 0 | 2 | 1 |
| $\#$ | 6 | 0 | 1 | 0 |
| $\#$ | 8 | 0 | 0 | 1 |

This give us bit more insight - cars with automatic transmissions don't seem to have more than 4 carburetors, but cars with manual transmissions might have as many as 8 , but not more carburetors than cylinders.

Another tool that is often useful to explore multivariate data is the "pairs plot", which shows correlations for all pairs. Since we have 3 factors here, lets exclude them so we can focus on the numeric variables.

```
pairs(mtcars[, -c(2, 8, 9, 10, 11)])
```



Now we can see what patterns of correlation exist in this dataset. Fuel economy ("mpg") is relatively well correlated (negatively) with displacement, though perhaps not in a linear fashion. Quarter-mile time (qsec) is not strongly correlated with any of the other variables (but there may be a weak negative correlation with hp , which stands to reason).

### 10.2.1 Lattice Graphics

The "Lattice" package includes nice functionality for making plots conditioned on a third variable. Either use install.packages ("lattice") if your are connected to the internet or install.packages (repos=NULL, type $=$ "source", pkgs = file.choose()) and select the package file for "lattice". Remember that to use it you have to load it: library (lattice)

Alternately, you can go to the "Packages" tab in RStudio and click "Install Packages". Note that while you should only need to install a package once, you will need to load it (via the function library()) each session that you wish to use it - this is to keep R from getting to bloated.

The lattice package has functions that plot data conditioned on another variable, which is specified by the I operator.

```
histogram(~hp | cyl, data = mtcars)
```



```
bwplot(~hp | cyl, data = mtcars)
```


xyplot(mpg ~ disp | trans, data = mtcars)
xyplot(mpg ~ disp | trans, data = mtcars)


### 10.2.2 EXTRA: Customizing Lattice Plots

By defining custom functions, we can customize lattice plots. Here we'll define a custom function using panel. functions from lattice. The actual definition of the function is simple, knowing the pieces needed to define this particular function is less so.

```
plot.regression = function(x, y) {
 panel.xyplot(x, y)
```

```
 panel.abline(lm(y ~ x))
}
xyplot(mpg ~ wt | gear, panel = plot.regression, data = mtcars)
```



### 10.3 An Example

For example let us consider some data from the pilot study on root anatomy that we looked at in the last chapter. 123 root cross sections were analyzed for a suite of 9 anatomical traits. There are several sources of variation here - samples are from different genotypes (12), grown in different media (2), and from different locations in the root system (2).

In the last chapter we saw how to covert several columns to factors, how to change factor levels, and how to calculate new variables.

```
getwd() ## mine is 'EssentialR/Chapters', YMMV
[1] "/Users/enord/Dropbox/R_Class/EssentialR/Chapters"
anat <- read.table("../Data/anatomy-pilot-simple.txt", header =
TRUE,
 sep = "\t", stringsAsFactors = TRUE)
summary(anat)
Gtype media.rep sample Loc
C :12 r1:31 Min. :1.000 L1:60
```



```
anat[, 3] <- factor(anat[, 3])
cols 3 to factor
levels(anat$media.rep) <- c("R1", "R1", "R2", "R2")
r1,2 to R1,2
anat$CellSize.avg <- rowMeans(anat[, 11:14]) # avgCellSize
anat$m.Loc <- factor(paste(anat$media.rep, anat$Loc))
combined levels
```

We've fixed that. Now that we have estimates for average CellSize let's remove the original cell size values as well as the comments column.

```
anat <- anat[, -(11:15)]
names(anat)
\begin{tabular}{lrll}
\# [1] "Gtype" & "media.rep" & "sample" \\
\# & [4] "Loc" & "RSXA.mm2" & "TCA.mm2" \\
\# [7] "AA.mm2" & "Cort.Cell.Num" "XVA.mm2" \\
\# [10] "Per.A" & "CellSize.avg" & "m.Loc"
\end{tabular}
summary(anat)
```


\#
\#
\#

```
Max. :0.08990 Max. :46.26 Max. :0.0012030
```

Max. :0.08990 Max. :46.26 Max. :0.0012030
m.Loc
m.Loc
R1 L1:29
R1 L1:29
R1 L2:31
R1 L2:31
R2 L1:31
R2 L1:31
R2 L2:32

```
R2 L2:32
```

We're down to 12 variables, but this is probably too many for a pairs plot. We'll exclude the first 4 variables as they are factors.

```
pairs(anat[, -(1:4)])
```



That is a useful figure that permits us to quickly see how seven variables are related to each other. What would happen if we used pairs (anat)? For more variables than 7 or 8 the utility of such a figure probably declines. We can see that RXSA (cross section area) is tightly correlated with TCA (cortical area), and that AA (aerenchyma area) is correlated with Per.A (aerenchyma area as percent of cortex). These are not surprising, as they are mathematically related.

XVA (xylem vessel area) does not seem to be strongly correlated with any other measure. Per.A (Cortical aerenchyma as percent of root cortex) is correlated with average cell size (which is interesting if you are a root biologist!).

Sometimes it is useful to enlarge a plot to see it better - especially if it is a complex one like this pairs plot. In RStudio, you can click the "zoom" button above the plots to enlarge a plot for viewing.
We can also use the function by () for multi-way data summaries over factor variables.

```
by(data = anat[, 7:10], INDICES = list(anat$media.rep, anat$Loc),
 FUN = colMeans)
```

```
R1
: L1
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
1.712069e-01 1.808207e+03 4.722414e-02 2.038428e+01
--
: R2
: L1
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
1.368774e-01 1.740452e+03 4.993548e-02 1.864896e+01

: R1
: L2
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
2.577355e-01 2.009871e+03 5.344839e-02 2.447344e+01
--
: R2
: L2
AA.mm2 Cort.Cell.Num XVA.mm2 Per.A
2.688344e-01 1.865281e+03 5.228438e-02 2.772134e+01
```

Note that if we are including more than one factor in the argument INDICES they must be in a list() - the syntax is similar to that for aggregate() that we saw in chapter 9 .

### 10.4 PCA

Since we live in a three dimensional world, our perceptual ability can generally cope with three dimensions, but we often have difficult time visualizing or understanding higher dimensional problems. Principal Components Analysis, or PCA, is a tool for reducing the dimensions of a data set.

In the most basic terms, PCA rotates the data cloud to produce new axes, or dimensions, that maximize the variability. These are the main axes of variation in the data, or the "Principal Components". They can be related to the original variables only by rotation. Here is an example with the mtcars data:

```
data(mtcars)
pca1 <- prcomp(mtcars, center = TRUE, scale. = TRUE)
summary(pca1)
```

| \# Importance of components: |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| \# | PC1 | PC2 | PC3 | PC4 |
| \# Standard deviation | 2.5707 | 1.6280 | 0.79196 | 0.51923 |
| \# Proportion of Variance | 0.6008 | 0.2409 | 0.05702 | 0.02451 |
| \# Cumulative Proportion | 0.6008 | 0.8417 | 0.89873 | 0.92324 |
| \# | PC5 | PC6 | PC7 | PC8 |
| \# Standard deviation | 0.47271 | 0.46000 | 0.3678 | 0.35057 |
| \# Proportion of Variance | 0.02031 | 0.01924 | 0.0123 | 0.01117 |
| \# Cumulative Proportion | 0.94356 | 0.96279 | 0.9751 | 0.98626 |
| \# | PC9 | PC10 | PC11 |  |
| \# Standard deviation | 0.2776 | 0.22811 | 0.1485 |  |
| \# Proportion of Variance | 0.0070 | 0.00473 | 0.0020 |  |
| \# Cumulative Proportion | 0.9933 | 0.99800 | 1.0000 |  |

screeplot(pca1)



| pca1\$rotation |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  |  |  |  |  |
| \# | PC1 | PC2 | PC3 | PC4 |
| \# mpg | -0.3625305 | 0.01612440 | -0.22574419 | -0.022540255 |
| \# cyl | 0.3739160 | 0.04374371 | -0.17531118 | -0.002591838 |
| \# disp | 0.3681852 | -0.04932413 | -0.06148414 | 0.256607885 |
| \# hp | 0.3300569 | 0.24878402 | 0.14001476 | -0.067676157 |
| \# drat | -0.2941514 | 0.27469408 | 0.16118879 | 0.854828743 |
| \# wt | 0.3461033 | -0.14303825 | 0.34181851 | 0.245899314 |
| \# qsec | -0.2004563 | -0.46337482 | 0.40316904 | 0.068076532 |
| \# vs | -0.3065113 | -0.23164699 | 0.42881517 | -0.214848616 |
| \# am | -0.2349429 | 0.42941765 | -0.20576657 | -0.030462908 |
| \# gear | -0.2069162 | 0.46234863 | 0.28977993 | -0.264690521 |
| \# carb | 0.2140177 | 0.41357106 | 0.52854459 | -0.126789179 |
| \# | PC5 | PC6 | PC7 | PC8 |

```
mpg 0.10284468 -0.10879743 0.367723810-0.754091423
cyl 0.05848381 0.16855369 0.057277736 -0.230824925
disp 0.39399530 -0.33616451 0.214303077 0.001142134
hp 0.54004744 0.07143563 -0.001495989 -0.222358441
drat 0.07732727 0.24449705 0.021119857 0.032193501
wt -0.07502912 -0.46493964 -0.020668302 -0.008571929
qsec -0.16466591 -0.33048032 0.050010522 -0.231840021
vs 0.59953955 0.19401702 -0.265780836 0.025935128
am 0.08978128 -0.57081745 -0.587305101 -0.059746952
gear 0.04832960 -0.24356284 0.605097617 0.336150240
carb -0.36131875 0.18352168 -0.174603192 -0.395629107
PC9 PC10 PC11
mpg 0.235701617 0.13928524 -0.124895628
cyl 0.054035270 -0.84641949 -0.140695441
disp 0.198427848 0.04937979 0.660606481
hp -0.575830072 0.24782351 -0.256492062
drat -0.046901228 -0.10149369 -0.039530246
wt 0.359498251 0.09439426 -0.567448697
qsec -0.528377185 -0.27067295 0.181361780
vs 0.358582624 -0.15903909 0.008414634
am -0.047403982 -0.17778541 0.029823537
gear -0.001735039 -0.21382515 -0.053507085
carb 0.170640677 0.07225950 0.319594676
```

Notice:

1. prcomp() requires numeric variables only; we must exclude any nonnumeric variables in the data.
2. Because the variables may be scaled differently, it is almost always necessary to subtract the mean and scale by the standard deviation, so all variables share the same scale, hence the arguments center and scale. For more evidence see the next code block.
3. summary () on an object of type prcomp gives us a brief description of the principal components. Here we see that there are 11 PCs - the full number of PCs is always the number of dimensions in the data, in this case 11.
4. The "reduction of dimensions" can be seen in the "Cumulative Proportion" row - the first three PCs explain about $90 \%$ of the variation in the data, so we can consider three rather than 11 variables (although those three represent a synthesis of all 11). The screeplot() is basically a barplot of the the proportion of variance explained. This data set is rather nicely behaved, the first 2 or 3 PCs capture most of the variation. This is not always the case.
5. The rotation, sometimes called "loadings" shows the contribution of each variable to each PC. Note that the signs (directions) are arbitrary here.
6. PCA is often visualized with a "biplot", in which the data points are visualized in a scatterplot of the first two PCs, and the original variables are also drawn in relation to the first two PCs. Here one can see that vehicle weight (wt) is rather well correlated with number of cylinders and displacement, but that fuel economy (mpg) in inversely correlated with number of cylinders and displacement. Variables that are orthogonal are not well correlated - forward gears (gear) and horsepower (hp). In this case the first 2 PCs explain about $85 \%$ of the variation in the data, so these relationships between variables are not absolute.
```
wrong.pca <- prcomp(mtcars)
summary(wrong.pca)
Importance of components:
\# PC1 PC2 PC3 PC4
Standard deviation 136.533 38.14808 3.07102 1.30665
Proportion of Variance 0.927 0.07237 0.00047 0.00008
Cumulative Proportion 0.927 0.99937 0.99984 0.99992
PC5 PC6 PC7 PC8
Standard deviation 0.90649 0.66354 0.3086 0.286
Proportion of Variance 0.00004 0.00002 0.0000 0.000
Cumulative Proportion 0.99996 0.99998 1.0000 1.000
PC9 PC10 PC11
Standard deviation 0.2507 0.2107 0.1984
Proportion of Variance 0.0000 0.0000 0.0000
Cumulative Proportion 1.0000 1.0000 1.0000
```

screeplot(wrong.pca)



To highlight the importance of scaling, we demonstrate here the unscaled pca of the mtcars data. Note that for the unscaled wrong.pca the first 2 PCs explain nearly all the variance - this is simply because a small number (2) of variables are scaled much "larger" than the others and so contribute a much larger share of the variance. A look at summary (mtcars) should show you that re-scaling mpg , disp, and hp (simply dividing by 10 , 100, and 100 , respectively) would yield a different pca than the original scaled pca - I leave it for you to test.

### 10.5 Clustering

Another way to look at multivariate data is to ask how data points may be related to each other. A glance at the biplot above shows that there are some small clusters of data points. There are a number of ways to approach this question. Here we'll demonstrate hierarchical clustering. This begins by finding the points that are "closest" to each other. In R "Closeness" is actually calculated
by the function dist () and can be defined various ways - the simplest is the euclidean distance, but there are other options also (see ?dist). Data points are then grouped into clusters based on their "closeness" (or distance), and (as you might expect by now) there are different methods of grouping ("agglomeration") supported - see ?hclust for more.

Now we can use dist () and hclust () to cluster the data. However, as we saw with PCA, differences in variable scaling can be very important. We can use the function scale() to scale and center the data before clustering. As with PCA, it is instructive to compare the this dendrogram with that derived from unscaled data (again, I leave this to the reader).
plot(hclust(dist(scale(mtcars))))

## Cluster Dendrogram


dist(scale(mtcars))
hclust (*, "complete")
Note that the three Merc 450 models cluster together, and the Cadillac Fleetwood and Lincoln Continental also cluster. The dendrogram for the unscaled data makes less sense (though if you don't happen to remember cars from 1973 it is possible that none of these clusters look "right" to you).

### 10.5.1 Plotting a dendrogram horizontally.

If we want to view the dendrogram printed horizontally, we have to save our hclust object and create a dendrogram object from it. We'd also need to tweak the plot margins a bit, but it might make the dendrogram easier to read:

```
hc <- hclust(dist(scale(mtcars)))
dendro <- as.dendrogram(hc)
par(mar = c(3, 0.5, 0.5, 5))
plot(dendro, horiz = TRUE)
```



Another clustering tool is "k-means clustering". K-means clustering does require that we provide the number of clusters, and it is sensitive to the starting location of the clusters (which can be user specified or automatic). This means that K-means will not always return exactly the same clustering. Here we'll demonstrate using the iris data, which has floral dimensions for three species of iris. We'll specify three clusters to see how well we can separate the three species.

```
data(iris)
kcl <- kmeans(iris[, -5], 3, nstart = 3)
table(kcl$cluster, iris$Species)
```

| $\#$ |  | setosa | versicolor | virginica |
| :--- | ---: | ---: | ---: | ---: |
| $\#$ | 1 | 0 | 2 | 36 |
| $\#$ | 2 | 50 | 0 | 0 |
| $\#$ | 3 | 0 | 48 | 14 |

Based on the table, it seems like "setosa" can be reliably separated but "versicolor" and "virginica" are somewhat more difficult to separate, although even "virginica" is identified $72 \%$ of the time. Let's examine this data a bit more. Since the data is rounded to the nearest 0.1 cm , we'll add a bit of noise to the data, using jitter()

```
plot(jitter(iris$Petal.Length), jitter(iris$Sepal.Width),
 col = kcl$cluster, main = "K-means", xlab = "Petal length",
 ylab = "Sepal width")
plot(jitter(iris$Petal.Length), jitter(iris$Sepal.Width),
 col = iris$Species, main = "Species", xlab = "Petal length",
 ylab = "Sepal width")
```



Note that the colors in the above plots are essentially arbitrary. To better see where the kmeans () result doesn't match the original species, it is worth "zooming in" on the are where there is some confusion. Try running the above code and adding " $\mathrm{xlim}=\mathrm{c}(4,6), \mathrm{ylim}=\mathrm{c}(2.3,3.4)$ " to both plot() calls. It is also worth repeating these plots without the use of jitter() to better appreciate how it helps in this case.

For more useful descriptions of functions, see the CRAN Task View on multivariate analysis.

### 10.6 Exercises

1) The built in dataset iris has data on four floral measurements for three different species of iris. Make a pairs plot of the data. What relationships (correlations) look strongest?
2) The grouping evident with the Species variable in the last plot should make you curious. Add the argument col=iris\$Species to the last plot you made. Does this change your conclusions about correlations between any of the relationships? Can you make a lattice plot (xyplot()) showing Sepal.Length as a function of Sepal.Width for the different species?
3) The built in data state. $x 77$ (which can be loaded via data(state)) has data for the 50 US states. Fit a principal components analysis to this data. What proportion of variation is explained by the first three principal components? What variable has the greatest (absolute value) loading value on each of the first three principal components? (Note: the dataset state is a list of datasets one of which is a matrix named state. x77)
4) The state. x77 can also be approached using hierarchical clustering. Create a cluster dendrogram of the first 20 states (in alphabetical order, as presented in the data) using hclust(). (Hint: given the length of the names, it might be worth plotting the dendrogram horizontally). Do any clusters stand out as surprising?

## Chapter 11

## Linear Models I

## Linear regression

### 11.1 Introduction

Regression is one of the most basic but fundamental statistical tools. We have a response ("dependent") variable - y that we want to model, or predict as a function of the predictor ("independent") variable - x . ( $\mathrm{y} \sim \mathrm{x}$ in R-speak).

We assume a linear model of the form $y=B_{0}+B_{1} * x+e$ where $B_{0}$ is the intercept, $B_{1}$ is the slope, and e is the error. Mathematically we can estimate $B_{0}$ and $B_{1}$ from the data. Statistical inference requires that we assume that: the errors are independent $\mathcal{E}^{2}$ normal with mean 0 and var $=s^{2}$.

Notice that we don't have to assume that y or x are normally distributed, only that the error (or residuals) are normally distributed ${ }^{1}$.

### 11.2 Violation of Assumptions and Transformation of Data

We'll begin with some data showing body and brain weights for 62 species of mammals (if you haven't installed MASS, do install.packages("MASS")). We'll load the data and fit a regression.

[^23]```
library(MASS)
data(mammals)
model1 <- lm(brain ~ body, data = mammals)
summary(model1)
```

```
#
# Call:
# lm(formula = brain ~ body, data = mammals)
#
# Residuals:
\# Min 1Q Median 3Q Max
# -810.07 -88.52 -79.64 -13.02 2050.33
#
# Coefficients:
# Estimate Std. Error t value Pr}(>|t|
# (Intercept) 91.00440 43.55258 2.09 0.0409 *
# body 0.96650 0.04766 20.28 <2e-16 ***
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 334.7 on 60 degrees of freedom
# Multiple R-squared: 0.8727, Adjusted R-squared: 0.8705
# F-statistic: 411.2 on 1 and 60 DF, p-value: < 2.2e-16
```

So far this looks pretty satisfactory - R^{2} is , and the p -value is vanishingly small $\left(<2.2^{*} 10^{-16}\right)$. But let's have a look at the distribution of the residuals to see if we're violating any assumptions:

```
plot(model1)
```


The diagnostic plots show some problems - the residuals don't seem to be normally distributed (Normal Q-Q plot shows large departure from linear). This suggests that transformation may be needed. Let's look at the data, before and after \log transformation:

```
with(mammals, plot(body, brain))
with(mammals, plot(body, brain, log = "xy"))
with(mammals, plot(log10(body), log10(brain)))
```


Here it is clear that this data may need log transformation (as is often the case when the values occur over several orders of magnitude). The \log / \log plot of body and brain mass shows a much stronger linear association. Let's refit the model.

```
model2 <- lm(log(brain) ~ log(body), data = mammals)
summary(model2)
```

```
#
# Call:
# lm(formula = log(brain) ~ log(body), data = mammals)
#
# Residuals:
# Min 1Q Median 3Q Max
# -1.71550 -0.49228 -0.06162 0.43597 1.94829
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 2.13479 0.09604 22.23 <2e-16 ***
# log(body) 0.75169 0.02846 26.41 <2e-16 ***
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 0.6943 on 60 degrees of freedom
# Multiple R-squared: 0.9208, Adjusted R-squared: 0.9195
# F-statistic: 697.4 on 1 and 60 DF, p-value: < 2.2e-16
```

We see a bump in the R^{2}. The p-value isn't appreciably improved (but it was already very significant).

```
plot(model2)
```


This is much more satisfactory - the residuals are much nearer normal distribution than in the raw data. We can confirm this by inspecting the residuals. From the summary we can see that \log (brain) is predicted to be near $2.13+$ $0.752 * \log$ (body), so each unit increase in \log (body) yields an increase of 0.752 in \log (brain).

```
op <- par(mfrow = c(1, 2), mar = c(4, 3, 2, 1))
plot(density(model1$resid), main = "model1")
plot(density(model2$resid), main = "model2")
```

model1

$$
\mathrm{N}=62 \text { Bandwidth }=22.2
$$

model2

$\mathrm{N}=62$ Bandwidth $=0.271$
par(op)
par(op)

Note that we must refit the model to check this - the residuals from the log transformed model are not the same as the log of the residuals! They can't be the residuals are centered about zero (or should be), so there are many negative values, an the log of a negative number can't be computed.

Notice that $\operatorname{lm}()$ creates an "lm object" from which we can extract things, such as residuals. Try coef(model1) and summary (model2) \$coeff.

Another example of violation of assumptions. This is weight and age (in months) data for 5337 children <12 years old.

```
Weights <- read.csv("../Data/WeightData.csv", comm = "#",
    stringsAsFactors = TRUE)
hist(Weights$age, main = "")
plot(weight ~ age, data = Weights)
```


We can see that there appears to be increasing variation in weight as children age. This is pretty much what we'd expect - there is more space for variation (in absolute terms) in the weight of 12 year-olds than in 12 week-olds. However this suggests that for a valid regression model transformation of the weight might be needed.

```
op <- par(mfrow = c(1, 2), mar = c(2, 3, 1.5, 0.5))
plot(log(weight) ~ age, data = Weights)
abline(v = 7, lty = 2)
plot(log(weight) ~ age, data = subset(Weights, age > 7))
```


The variation appears more consistent in the first plot, apart from some reduced variation in weights (and a steeper slope) at the very low end of the age range (<7 months, indicated by the dashed line). In the second plot we've excluded this data. Let's fit a regression to both raw and transformed data and look at the residuals.

```
m1 <- lm(weight ~ age, data = Weights)
m2 <- lm(log(weight) ~ age, data = subset(Weights, age > 7))
```

You can use plot (m1) to look at the diagnostic plots. Let's compare the distribution of the residuals, though here we'll only look at the first two plots from each model.

```
op <- par(mfrow = c(2, 2), mar = c(2, 3, 1.5, 0.5))
plot(m1$fitted.values, m1$resid)
plot(density(m1$resid))
plot(m2$fitted.values, m2$resid)
plot(density(m2$resid))
```


 density.default($x=m 2 \$ r e s$

par (op)

Both of the plots of residuals vs fitted values and the kernel density estimates of the residuals show that the transformed data (with the <7 month subjects excluded) more nearly meets the regression assumptions, though there is still a bit of change in variation, they are certainly sufficiently close to normal and constant to meet regression assumptions.

11.3 Hypothesis Testing

IN our analysis of the 'beans" data, there was a strong correlation between Shoot and Root biomass ${ }^{2}$, and it seems to apply to both the High P and Low P plants.

```
beans <- read.csv("../Data/BeansData.csv", comm = "#",
s stringsAsFactors = TRUE)
plot(RtDM ~ ShtDM, data = beans, col = as.factor(P.lev))
```


Let's have a look at the regression fit to this data. Note that a factor (like P.lev) can be used directly to color points. They are colored with the colors from the color palette that correspond to the factor levels (see palette() to view or change the default color palette).

```
m1 <- lm(RtDM ~ ShtDM, data = beans)
summary(m1)
```

\#
\# Call:
\# lm(formula $=$ RtDM \sim ShtDM, data $=$ beans)
\#
\# Residuals:
\# Min 1Q Median 3Q Max

[^24]```
-0.15540 -0.06922 -0.01391 0.06373 0.22922
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20659 0.04892 4.223 0.00035 ***
ShtDM 0.56075 0.03771 14.872 5.84e-13 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.1007 on 22 degrees of freedom
Multiple R-squared: 0.9095, Adjusted R-squared: 0.9054
F-statistic: 221.2 on 1 and 22 DF, p-value: 5.838e-13
plot(m1$resid ~ m1$fitted.values)
```



The residuals don't show any particular pattern, and they are approximately normal (see plot(density(m1\$resid))). The summary shows an intercept of signif (summary (m1)\$coef $[1,1], 3$ ) and slope (the ShtDM term) of signif (summary (m1)\$coef[2,1],3). Standard errors are given for each parameter, as well as a t-value and a p-value (columns 3 and 4).

The t-value and p-values given by summary $(\mathrm{m} 1)^{3}$ are for the null hypothesis that B 0 (or B 1 ) is equal to 0 . In this case the p -values are both very small, indicating a high degree of certainty that both parameters are different from 0 (note that this is a 2 -sided test).
In some cases, we want to know more. For example, we might have the hypothesis that the slope of the root:shoot relationship should be 1 . We can test this

[^25]by calculating the t -value and p -value for this test. Recall that t is calculated as the difference between the observed and hypothesized values scaled by (divided by) the standard error.

```
B1 <- summary(m1)$coeff[2, 1:2]
t <- (B1[1] - 1)/B1[2]
t
```

```
Estimate
-11.64947
```

For convenience we've stored the estimate and SE for $B_{1}$ (slope) as B1 - we could just as well have used $t=(\operatorname{summary}(m 1) \$ \operatorname{coeff}[2,1]-1) /$ summary (m1) \$coeff $[2,2]$. The t value is very large and negative (we can read this value as " B 1 is 11.65 standard errors smaller than the hypothesized value"), so the slope estimate is smaller than the hypothesized value. If we want to get a p-value for this, we use the function pt (), which give probabilities for the t distribution.

```
pt(t, df = 22, lower.tail = TRUE)
Estimate
3.505015e-11
```

You can see we specify 22 degrees of freedom - this is the same as error degrees of freedom shown in summary (m1). We specified lower.tail=TRUE because we have a large negative value of $t$ and we want to know how likely a lower (more negative) value would be - in this case it is pretty unlikely! Since our hypothesis is a 2 -sided hypothesis, we'll need to multiply the p-value by 2 .
We can use the same approach to test hypothesized values of $B_{0}$ - but be sure to use the SE for $B_{0}$, since the estimates of SE are specific to the parameter. Note: Here is one way to check your work on a test like this: Calculate a new y-value that incorporates the hypothesis. For example - here our hypothesis is $B_{1}=1$, mathematically 1 * beans\$ShtDM. So if we subtract that from the root biomass, what we have left is the difference between our hypothesized slope and the observed slope. In this case we calculate it as RtDM- $1 *$ ShtDM. If the hypothesis was correct then the slope of a regression of this new value on the predictor would be zero. Have a look at summary (lm(RtDM-1*ShtDM~ShtDM, data=beans)) - the slope will be quite negative, showing that our hypothesis is not true, and the p-value very low. Note though that this p-value is 2 -sided, and in fact is twice the p-value we calculated above.
$R$ actually has a built-in function to do such tests - offset() can be used to specify offsets within the formula in a call to $\operatorname{lm}()$.

```
summary(lm(RtDM ~ ShtDM + offset(1 * ShtDM), data = beans))
#
Call:
lm(formula = RtDM ~ ShtDM + offset(1 * ShtDM), data = beans)
#
Residuals:
Min 1Q Median 3Q Max
-0.15540 -0.06922 -0.01391 0.06373 0.22922
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.20659 0.04892 4.223 0.00035 ***
ShtDM -0.43925 0.03771 -11.649 7.01e-11 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.1007 on 22 degrees of freedom
Multiple R-squared: 0.9095, Adjusted R-squared: 0.9054
F-statistic: 221.2 on 1 and 22 DF, p-value: 5.838e-13
```

The syntax is a bit odd, since we have both ShtDM and $1 * \operatorname{ShtDM}$ in our model, but this is how we specify a fixed hypothetical value.

It is useful to know that the line plotting function abline() can take an lm object as an argument (The argument lty specifies line type - 2 is a dotted line).

```
plot(RtDM ~ ShtDM, data = beans)
abline(m1, lty = 2)
```



### 11.4 Predictions and Confidence Intervals from Regression Models

In some cases we want to use a regression model to predict values we haven't (or can't) measure, or we would like to know how confident we are about a regression line. The function predict() can make predictions from lm objects.

```
new.vals <- c(2, 2.1, 2.2, 3.5)
preds = predict(m1, newdata = data.frame(ShtDM = new.vals))
points(new.vals, preds, col = "red", pch = 24)
```



A key detail to notice: predict() requires the newdata as a data frame - this is to allow prediction from more complex models ${ }^{4}$. The predicted values should (and do) fall right on the line. Also notice that the final value for which we wanted a prediction is well beyond the range of the data. This is not wise, and such predictions should not be trusted (but R will not warn you - always engage the brain when analyzing!).

We can think about two types of "confidence intervals" for regressions. The first can be thought of as describing the certainty about the location of the regression line (the average location of $y$ given $x$ ). $R$ can calculate this with the predict() function if we ask for the "confidence" interval.

```
ci <- predict(m1, data.frame(ShtDM = sort(beans$ShtDM)), level =
\hookrightarrow 0.95,
 interval = "confidence")
head(ci)
```

| \# | fit | lwr | upr |
| :--- | ---: | ---: | ---: |
| \# | 1 | 0.4942547 | 0.4270534 |
| \# | 0.5614560 |  |  |
| \# | 0.5432641 | 0.5919371 | 0.5346135 |
| \# | 0.591956 | 0.6053326 |  |
| \# | 0 | 0.6439465 | 0.5618943 |
| \# 6 | 0.6530588 | 0.6719988 |  |

Notice there are three values - the "fitted" value, and the lower and upper CI. Also notice that we can specify a confidence level, and that we used our predictor variable (beans\$ShtDM) as the new data, but we used sort () on it - this is to aid in plotting the interval.

We can plot this interval on our scatterplot using the function lines(). Since we've sorted the data in ci ( $y$-axis), we need to sort the $x$-axis values also. (Note: sort() also removes any NA values.)

```
plot(RtDM ~ ShtDM, data = beans)
abline(m1, lty = 1)
lines(sort(beans$ShtDM), ci[, 2], col = "red")
lines(sort(beans$ShtDM), ci[, 3], col = "red")
```

[^26]
### 11.4. PREDICTIONS AND CONFIDENCE INTERVALS FROM REGRESSION MODELS167



It shouldn't surprise us that the confidence interval here is quite narrow - the p-values for B0 and B1 are very small. Notice that a fair number of the data points are outside the bands. This is because this "confidence interval" applies to the regression line as a whole. If we want to predict individual values, the uncertainty is a bit greater - this is called a "prediction interval".

```
lines(sort(beans$ShtDM), ci[, 2], col = "red")
lines(sort(beans$ShtDM), ci[, 3], col = "red")
pri <- predict(m1, data.frame(ShtDM = sort(beans$ShtDM)),
 level = 0.95, interval = "prediction")
lines(sort(beans$ShtDM), pri[, 2], lty = 2)
lines(sort(beans$ShtDM), pri[, 3], lty = 2)
```



When we plot this notice that $\sim 95 \%$ of our data points are within this interval

- this is consistent with the meaning of this interval.


### 11.5 Exercises

1) For the beans data test how effective root biomass (RtDM) is as a predictor of root length (rt.len).
2) For the beans data, test the hypothesis that the slope of the relationship of root biomass $\sim$ shoot biomass $(B 1)$ is 0.5 .
3) We worked with the dataset mammals earlier in this chapter, and concluded that it needed to be log-transformed to meet regression assumptions. Use predict () to calculate the confidence interval and regression line for this regression and graph it on both the $\log / \log$ plot and on the un-transformed data (this will require that you back-transform the coordinates for the line and confidence intervals).

## Chapter 12

## Linear Models II

## ANOVA

### 12.1 I. Introduction

It is often the case that we have one or more factors that we'd like to use to model some response. This is where we turn to Analysis of Variance, or ANOVA. Remember that, despite the fancy name, one-way ANOVA is basically just another form of regression - the continuous predictor variable is replaced by a factor. Since this is the case, it should not be surprising that the function $\operatorname{lm}$ () can be used for this type of analysis also.

### 12.2 One-way ANOVA

To explore this type of model we'll load some data on how the type of wool and the loom tension affects the number of breaks in wool yarn being woven.

```
data(warpbreaks)
boxplot(breaks ~ wool, data = warpbreaks)
boxplot(breaks ~ tension, data = warpbreaks)
```



Do the two types of wool have differing average numbers of breaks? The boxplot does not suggest much difference. One way to check would be to use a twosample t-test.

```
t.test(breaks ~ wool, data = warpbreaks)
#
Welch Two Sample t-test
#
data: breaks by wool
t = 1.6335, df = 42.006, p-value = 0.1098
alternative hypothesis: true difference in means between group A and group B is not
95 percent confidence interval:
-1.360096 12.915652
sample estimates:
mean in group A mean in group B
31.03704 25.25926
```

Of course, as we saw in Lesson 3, if we have more than two groups, we need something different.

```
oneway.test(breaks ~ tension, data = warpbreaks)
#
One-way analysis of means (not assuming equal
variances)
#
```

```
data: breaks and tension
F = 5.8018, num df = 2.00, denom df = 32.32,
p-value = 0.007032
```

This strongly suggests that tension affects breaks. We can also use lm() to fit a linear model.

```
summary(lm(breaks ~ tension, data = warpbreaks))
#
Call:
lm(formula = breaks ~ tension, data = warpbreaks)
#
Residuals:
Min 1Q Median 3Q Max
-22.389 -8.139 -2.667 6.333 33.611
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.39 2.80 12.995 < 2e-16 ***
tensionM -10.00 3.96 -2.525 0.014717 *
tensionH -14.72 3.96 -3.718 0.000501 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 11.88 on 51 degrees of freedom
Multiple R-squared: 0.2203, Adjusted R-squared: 0.1898
F-statistic: 7.206 on 2 and 51 DF, p-value: 0.001753
```

The coefficients shown in the output from summary begin with the "Intercept". This is the mean for the first level of the factor variable ${ }^{1}$ - in this case tension="L". The coefficient given for the next level is for the difference between the second and the first level, and that for the third is for the difference between first and third.

We can use the function anova() on an lm object to see an analysis of variance table for the model.

[^27]```
anova(lm(breaks ~ tension, data = warpbreaks))
# Analysis of Variance Table
#
# Response: breaks
# Df Sum Sq Mean Sq F value Pr(>F)
# tension 2 2034.3 1017.13 7.2061 0.001753 **
# Residuals 51 7198.6 141.15
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

This shows very strong support ($\mathrm{p}=0.0018$) for a significant effect of tension on breaks. Note that summary (aov(breaks~tension, data=warpbreaks)) ${ }^{2}$ will give the same result with slightly different format.

If we want to test all the differences between groups, we can use TukeyHSD() to do so - but we must use it on an anject created by aov(), it won't work with an $\operatorname{lm}()$ object.

```
TukeyHSD(aov(breaks ~ tension, data = warpbreaks))
# Tukey multiple comparisons of means
# 95% family-wise confidence level
#
# Fit: aov(formula = breaks ~ tension, data = warpbreaks)
#
# $tension
# diff lwr upr p adj
# M-L -10.000000 -19.55982 -0.4401756 0.0384598
# H-L -14.722222 -24.28205 -5.1623978 0.0014315
# H-M -4.722222 -14.28205 4.8376022 0.4630831
```

This lists all the pairwise differences between groups showing the estimated difference between groups, the lower and upper confidence limits for the difference, and the p-value for the difference - a significant p-value means the difference is real. We can see that both H and M are different from L, but not from each other.

Of course, just as in regression it is good practice to check our diagnostic plots for violations of assumptions.

[^28]```
plot(lm(breaks ~ tension, data = warpbreaks))
```



There is evidence of modest difference in variance between groups (though not enough to cause concern), and the normal QQ plot shows that the residuals are near enough to normal.

### 12.3 For violations of assumptions.

For a one-way ANOVA (i.e. a single factor) where assumptions are violated, we do have a few options. The function oneway.test() we used above does not assume equal variance, so it can be used with unequal variance. If the residuals are strongly non-normal, the Kruskal-Wallace test is a non-parametric alternative.

```
kruskal.test(breaks ~ wool, data = warpbreaks)
#
Kruskal-Wallis rank sum test
#
data: breaks by wool
Kruskal-Wallis chi-squared = 1.3261, df = 1,
p-value = 0.2495
```

Another option is transformation of the data. However (as we'll see) a common cause of violation of regression assumptions is that there are sources of variation not included in the model. One of the brilliant features of the linear model is that it can accommodate multiple predictors, and the inclusion of the right predictors sometimes allows the regression assumptions to be met ${ }^{3}$.

### 12.4 Multi-Way ANOVA - Understanding summary (lm())

Particularly in designed experiments we often do have more than one factor that we need to include in our model. For example in the warpbreaks data we looked at both tension and wool separately, but we might need to combine them to understand what is going on. The formula interface lets us tell R how to use multiple predictors.

| R formula | Y as a function of: |
| :--- | :--- |
| $\mathrm{Y} \sim \mathrm{X} 1$ | X 1 |
| $\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2$ | X 1 and X 2 |
| $\mathrm{Y} \sim \mathrm{X} 1 * \mathrm{X} 2$ | X 1 and X 2 and the X1XX2 interaction |
| $\mathrm{Y} \sim \mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 1: \mathrm{X} 2$ | Same as above, but the interaction is |
| $\left(\mathrm{Y} \sim(\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3)^{\wedge} 2\right)$ | explicit |
|  | $\mathrm{X} 1, \mathrm{X} 2$, and X3, with only 2-way |
| $\mathrm{Y} \sim \mathrm{X} 1+\mathrm{I}\left(\mathrm{X} 1^{\wedge} 2\right)$ | interactions |
| $\mathrm{Y} \sim \mathrm{X} 1 \mid \mathrm{X} 2$ | X1 and X1 squared (use I()for a |

```
summary(lm(breaks ~ wool + tension, data = warpbreaks))
```


## \#

\# Call:
\# lm(formula $=$ breaks $\sim$ wool + tension, data $=$ warpbreaks)
\#
\# Residuals:
\# Min 1Q Median 3Q Max

| $\#$ | -19.500 | -8.083 | -2.139 | 6.472 |
| :--- | :--- | :--- | :--- | :--- |$\quad 30.722$

\#
\# Coefficients:

[^29]```
# Estimate Std. Error t value Pr}(>|t|
\begin{tabular}{lrrrrl} 
\# (Intercept) & 39.278 & 3.162 & 12.423 & \(<2 \mathrm{e}-16\) & *** \\
\# woolB & -5.778 & 3.162 & -1.827 & 0.073614 & . \\
\# tensionM & -10.000 & 3.872 & -2.582 & 0.012787 & \(*\) \\
\# tensionH & -14.722 & 3.872 & -3.802 & 0.000391 & ***
\end{tabular}
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 11.62 on 50 degrees of freedom
# Multiple R-squared: 0.2691, Adjusted R-squared: 0.2253
# F-statistic: 6.138 on 3 and 50 DF, p-value: 0.00123
```

The model coefficients here are understood nearly as before - the intercept now is the first level of each factor (e.g. wool=A \& tension=L). The woolB estimate is the difference between wool=A and wool=B. Because we have not included the wool x tension interaction here, we assume that the influence of wool is the same for all levels of tension. As before we can use anova() to see an ANOVA table showing the estimate of the effect for each factor, and TukeyHSD () on an $\operatorname{aov}()$ fit to test group-wise differences.

```
anova(lm(breaks ~ wool + tension, data = warpbreaks))
# Analysis of Variance Table
#
# Response: breaks
# Df Sum Sq Mean Sq F value Pr (>F)
# wool 1 450.7 450.67 3.3393 0.073614.
# tension 2 2034.3 1017.13 7.5367 0.001378 **
# Residuals 50 6747.9 134.96
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov(breaks ~ wool + tension, data = warpbreaks))
    Tukey multiple comparisons of means
        95% family-wise confidence level
#
# Fit: aov(formula = breaks ~ wool + tension, data = warpbreaks)
#
# $wool
# diff lwr upr p adj
# B-A -5.777778 -12.12841 0.5728505 0.0736137
```

```
#
# $tension
# diff lwr upr p adj
# M-L -10.000000 -19.35342 -0.6465793 0.0336262
# H-L -14.722222 -24.07564 -5.3688015 0.0011218
# H-M -4.722222 -14.07564 4.6311985 0.4474210
```

Notice that the p-value for the ANOVA and the Tukey comparisons are the same for the factor wool but not for tension - that is because there are only two levels of wool but 3 levels of tension.

With more than one factor we also need to think about interactions between them, and what they mean. I this case we can understand the interaction as asking:
Does changing the tension have the same effect on breaks for both wool A and wool B?

```
summary(lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks))
#
# Call:
# lm(formula = breaks ~ wool + tension + wool:tension, data = warpbreaks)
#
# Residuals:
\begin{tabular}{lrrrr} 
\# & Min & \(1 Q\) & Median & 3Q
\end{tabular}
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 44.556 3.647 12.218 2.43e-16 ***
# woolB -16.333 5.157 -3.167 0.002677 **
# tensionM -20.556 5.157 -3.986 0.000228 ***
# tensionH -20.000 5.157 -3.878 0.000320 ***
# woolB:tensionM 21.111 7.294 2.895 0.005698 **
# woolB:tensionH 10.556 7.294 1.447 0.154327
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 10.94 on 48 degrees of freedom
# Multiple R-squared: 0.3778, Adjusted R-squared: 0.3129
# F-statistic: 5.828 on 5 and 48 DF, p-value: 0.0002772
```

The output of summary () is similar to the above. The woolb estimate now is only for tension=L, since the last two estimates show the effect of wool on
breaks for the other tensions. Since this estimate is negative for tension=L and positive for the higher levels of tension this is likely to be a significant difference.

12.5 Multi-Way ANOVA - Calculating group means

If we wanted to calculate the means for each for the groups we could do so by adding coefficients together - for example the estimate for wool $=\mathrm{B}$; tension $=\mathrm{H}$ would be

Intercept (wool=A; tension=L)+woolB+tensionH+woolB: tensionH
It is not too complicated to calculate this from the coefficients.

```
m1 <- lm(breaks ~ wool * tension, data = warpbreaks)
sum(summary(m1)$coeff[c(1, 2, 4, 6), 1])
```

\# [1] 18.77778

But it would be tedious (and error-prone) to do this for all factor levels. Fortunately we don't need to - we can use the function predict() to do it for us. We just need to give it all the possible factor levels as "newdata". We can use the function unique() to give us the unique combinations of factor levels:

```
unique(warpbreaks[, 2:3])
```

We can then use these as the "newdata" argument to predict() to get our predicted values. First we'll create the lm object, and then we'll create an object for this "newdata", and then we'll calculate the predicted values.

```
m1 <- lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks)
m1.pv = unique(warpbreaks[, 2:3])
m1.pv$predicted = predict(m1, newdata = unique(warpbreaks[,
    2:3]))
m1.pv
```

In some cases ${ }^{4}$ we could also get these means is by using tapply() to apply the function mean().

[^30]```
tapply(m1$fitted, list(warpbreaks$wool, warpbreaks$tension),
 mean)
```

\# L M
\# A 44.5555624 .0000024 .55556
\# В $28.2222228 .77778 \quad 18.77778$

### 12.6 Multi-Way ANOVA - Getting a handle on interactions

It can be hard (or nearly impossible) to understand what an interaction really means. In this example it means that the effect of changing tension of rate of breakage differs for the two types of wool.

```
anova(lm(breaks ~ wool + tension + wool:tension, data =
warpbreaks))
Analysis of Variance Table
#
Response: breaks
Df Sum Sq Mean Sq F value Pr(>F)
wool 1 450.7 450.67 3.7653 0.0582130 .
tension 2 2034.3 1017.13 8.4980 0.0006926 ***
wool:tension 2 1002.8 501.39 4.1891 0.0210442 *
Residuals 48 5745.1 119.69

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Notice that here adding the interaction moved the effect of wool from $\mathrm{p}=0.074$ to $\mathrm{p}=0.058$. The interaction was strong enough that ignoring it increased the size of the residuals, and so reduced the magnitude of the F value.

Often it is helpful to visualize interactions to better understand them, and the function interaction.plot() gives us a quick way to do this.

```
with(warpbreaks, interaction.plot(x.factor = tension, wool,
 response = breaks))
```



The syntax here is a bit different: the first and third arguments are the x and y axes, and the second is the grouping factor (trace.factor). This clearly and quickly shows us that the biggest difference between wools is at low tension. ${ }^{5}$

```
plot(lm(breaks ~ tension * wool, data = warpbreaks))
```



[^31]A check the diagnostic plots shows minimal evidence of unequal variance ("heteroscedasticity") or departure from normal distribution. As hinted above note how improving the model by accounting for more sources of variation (adding the second factor and the interaction) improved the agreement with regression assumptions.

### 12.7 Multi-Way ANOVA - Tukey HSD and family-wise error

When we introduce an interaction we now have many more groups. In this example we have 6 groups ( 2 wools * 3 tensions). This gives many more pairwise comparisons.

```
TukeyHSD(aov(breaks ~ wool + tension + wool:tension, data =
@ warpbreaks))
Tukey multiple comparisons of means
95% family-wise confidence level
#
Fit: aov(formula = breaks ~ wool + tension + wool:tension, data = warpbreaks)
#
$wool
diff lwr upr p adj
B-A -5.777778 -11.76458 0.2090243 0.058213
#
$tension
diff lwr upr p adj
M-L -10.000000 -18.81965 -1.180353 0.0228554
H-L -14.722222 -23.54187 -5.902575 0.0005595
H-M -4.722222 -13.54187 4.097425 0.4049442
#
$`wool:tension`
diff lwr upr p adj
B:L-A:L -16.3333333 -31.63966 -1.027012 0.0302143
A:M-A:L -20.5555556 -35.86188 -5.249234 0.0029580
B:M-A:L -15.77777778 -31.08410 -0.471456 0.0398172
A:H-A:L -20.0000000 -35.30632 -4.693678 0.0040955
B:H-A:L -25.7777778 -41.08410 -10.471456 0.0001136
A:M-B:L -4.2222222 -19.52854 11.084100 0.9626541
B:M-B:L 0.5555556 -14.75077 15.861877 0.9999978
A:H-B:L -3.6666667-18.97299 11.639655 0.9797123
B:H-B:L -9.4444444 -24.75077 5.861877 0.4560950
B:M-A:M 4.7777778 -10.52854 20.084100 0.9377205
```

```
A:H-A:M 0.5555556 -14.75077 15.861877 0.9999978
B:H-A:M -5.2222222 -20.52854 10.084100 0.9114780
A:H-B:M -4.2222222 -19.52854 11.084100 0.9626541
B:H-B:M -10.0000000 -25.30632 5.306322 0.3918767
B:H-A:H -5.7777778 -21.08410 9.528544 0.8705572
```

Tukey's HSD shows us all 15 pairwise differences between the 6 combinations of wool and tension. This a situation where Fishers LSD does not perform well. The probability of detecting at least one difference where none exist is $\left(1-(1-\alpha)^{n}\right)$, with $\alpha=0.05$ and $n=15$ this is 0.537 . This shows why Tukey's multiple comparisons is important - this "family-wise" error rate can get quite high quickly.

Sorting out which groups really differ is not always simple, though in this case we can rather quickly see that the other five groups differ from woolA:tensionL, but those 5 groups don't differ from each other.

### 12.8 HSD.test - a useful tool for ANOVA

The package agricolae has some nice tools to make multiple comparisons a bit easier. Install the package to follow along.

```
library(agricolae)
data(sweetpotato)
```

Now we can fit a model to the data and make comparisons.

```
model <- aov(yield ~ virus, data = sweetpotato)
out <- HSD.test(model, "virus", group = TRUE)
out$means
out$groups
```

HSD.test() has nicely calculated the mean and standard deviations for each group and a description of how the means are grouped, with the groups denoted by letter such that groups that share a letter aren't different. In this case oo differs from cc and fc , and fc differs from 00 and ff .

A convenience function is provided which we can use to make a barplot of such an analysis, and all the arguments to barplot() can be used to modify this plot.

```
bar.group(out$groups, ylim = c(0, 45), density = 4, border =
@ "blue")
bar.group(out$groups, ylim = c(0, 45), col = c("grey30",
@ "grey70"),
 names.arg = c("Vir.1", "Vir.2", "Vir.3", "Vir.4"), ylab =
 @ "some units")
```



Here we demonstrate again on the warpbreaks data:

```
model2 <- (lm(breaks ~ wool + tension + wool:tension, data =
@arpbreaks))
HSD.test(model2, trt = "tension", group = TRUE, main = "Wool x
@ Tension")$groups
```

Note that while the HSD. test () function does not work for interactions, we can create an interaction variable using intearction() and then use HSD.test().

```
txw <- with(warpbreaks, interaction(wool, tension))
model3 <- aov(breaks ~ txw, data = warpbreaks)
library(agricolae)
HSD.test(model3, "txw", group = TRUE)$groups
```

Note that this output is much more compact than the output from TukeyHSD (aov(breaks~wool:tension, data=warpbreaks)) shown earlier, but the conclusion is identical. The compactness does come at a cost of the exact $p$-values not being shown.

### 12.9 Exercises

1) For the beans data we used in Chapter 11 model shoot biomass as a function of phosphorus (phos). Make sure phos is coded as a factor. Check the coefficient
estimates summary (lm(...)) - what do they suggest?
2) Use Tukey to compare the different levels of phos for the model in Problem 1. How does this confirm your answer to $\# 1$ ? Is the responsed similar for Root biomass? Does this same general pattern hold?
3) I kept track of my electric bill every month for over 7 years. The data set ("electric bill.txt") is located in the "Data" directory in essential R , and includes variable for month, year, the amount of electricity used in kilowatt hours (kwh), the number of days in the billing cycle (days), and the average temperature during the billing cycle (avgT). There are also variables that describe whether the bill was based on an estimated reading or actual reading (est, with levels e and a for estimated or actual), cost (in dollars), and energy use per day (kWhd.1).

Fit a model of kwhd. 1 as a function of avgT. What is the $R^{2}$ ? Test the hypothesis that the slope is -0.25 kwh per day per degree F increase in average monthly temperature. What is the $p$-value for this test?
4) My old house did not have AC, but we ran several fans in the summer, and the refrigerator and freezer certainly worked harder during the warmer months, so there could be a minimum in energy use at moderate temperatures. Include a quadratic (squared) term for average temperature. How does this change the $R^{2}$ value of the model? What is the $p$-value for the quadratic term? Do the residuals suggest that one model should be favored?

EXTRA) Graph both the linear model (a line) and the quadratic model (a curve) over the data. Hint you can use predict() and lines() like we used for confidence intervals to add a non-linear regression line, or use the function curve() to add curves to plots.

## Chapter 13

## Linear Models III

## More Linear Models

### 13.1 Introduction

In the last chapter we looked at extending linear regression to prediction from one or more categorical variables (factors). Here we'll explore a few more extensions of the linear model. First we'll look at using multiple continuous predictors. We'll also see how we can mix continuous and categorical predictors (often known as ANCOVA - Analysis of Co-variance). We'll also briefly consider how we can make specified comparisons between groups, and look at some more complex experimental designs.

A word about model selection - whenever we make statistical models we make decisions about what to include and what not to include. Essential R is focused on the mechanics of using $R$, and does not treat the issue of model selection, beyond noting that looking at whether regression assumptions are met is an important part of model selection. There are many different tools for testing different combinations of variables in models (forward selection, reverse selection,...), and there are (sometimes very strong) critiques of all these methods. The most defensible practice is to build a model based on hypothesis.

### 13.2 Multiple Regression

In some situations there is more than one predictor variable that needs to be included in our model. Here we'll use the "stackloss" data to demonstrate some
simple multiple regressions ${ }^{1}$. This data concerns the oxidation of ammonia to nitric acid based on three variables: Air flow, Water temperature, and Acid Concentration. Let's begin by looking at all the variables individually.

```
data(stackloss)
summary(lm(stack.loss ~ Air.Flow, data = stackloss))$coef
Estimate Std. Error t value Pr}(>|t|
(Intercept) -44.132025 6.10585762 -7.227818 7.314184e-07
Air.Flow 1.020309 0.09995287 10.207905 3.774296e-09
summary(lm(stack.loss ~ Water.Temp, data = stackloss))$coef
Estimate Std. Error t value Pr}(>|t|
(Intercept) -41.910867 7.6056213 -5.510512 2.575258e-05
Water.Temp 2.817445 0.3567438 7.897672 2.028017e-07
summary(lm(stack.loss ~ Acid.Conc., data = stackloss))$coef
Estimate Std. Error t value Pr
(Intercept) -47.9631841 34.5043888 -1.390060 0.1805827
Acid.Conc. 0.7589552 0.3991529 1.901415 0.0725230
```

There is some relationship with all three variables, though the p-value for Acid. Conc. is not quite low enough to be considered significant. With multiple regression we can combine multiple predictors, using the formula interface introduced in Chapter 12.
So we can use stack.loss~Air.Flow + Water. Temp to combine the two.

```
summary(lm(stack.loss ~ Air.Flow + Water.Temp, data =
stackloss))$coef
```

\# Estimate Std. Error t value
\# (Intercept) -50.3588401 5.1383281 -9.800628
\# Air.Flow $0.67115440 .1266910 \quad 5.297568$
\# Water.Temp $1.2953514 \quad 0.3674854 \quad 3.524905$
\# $\operatorname{Pr}(>|t|)$
\# (Intercept) 1.216471e-08
\# Air.Flow $4.897970 \mathrm{e}-05$
\# Water.Temp 2.419146e-03

[^32]Note that we've displayed only the coefficients here (summary (...)\$coef) for brevity. We can see that both variables have a highly significant effect on the response. We haven't yet tested to see if they interact.

```
summary(lm(stack.loss ~ Air.Flow * Water.Temp, data =
stackloss))$coef
```

```
Estimate Std. Error t value
```


# Estimate Std. Error t value

# (Intercept) 22.29030069 35.09601861 0.6351233

# (Intercept) 22.29030069 35.09601861 0.6351233

# Air.Flow -0.51550885 0.57984497 -0.8890460

# Air.Flow -0.51550885 0.57984497 -0.8890460

# Water.Temp -1.93005822 1.58044278 -1.2212136

# Water.Temp -1.93005822 1.58044278 -1.2212136

# Air.Flow:Water.Temp 0.05176139 0.02477854 2.0889604

# Air.Flow:Water.Temp 0.05176139 0.02477854 2.0889604

# Pr(>|t|)

# Pr(>|t|)

# (Intercept) 0.53380403

# (Intercept) 0.53380403

# Air.Flow 0.38638596

# Air.Flow 0.38638596

# Water.Temp 0.23867188

# Water.Temp 0.23867188

# Air.Flow:Water.Temp 0.05205945

```
Air.Flow:Water.Temp 0.05205945
```

This is an interesting situation. The interaction term of these variables is marginally significant, and each individual effect isn't significant apart from the interaction. Let's see how the third variable influences the response.

```
summary(lm(stack.loss ~ Air.Flow * Water.Temp * Acid.Conc.,
 data = stackloss))$coef
```

```
Estimate
(Intercept) -3.835095e+03
Air.Flow 6.414455e+01
Water.Temp 1.864374e+02
Acid.Conc. 4.367229e+01
Air.Flow:Water.Temp -3.074347e+00
Air.Flow:Acid.Conc. -7.321000e-01
Water.Temp:Acid.Conc. -2.131307e+00
Air.Flow:Water.Temp:Acid.Conc. 3.537184e-02
Std. Error t value
(Intercept) 1.771119e+03 -2.165351
Air.Flow 2.935552e+01 2.185093
Water.Temp 8.989859e+01 2.073864
Acid.Conc. 2.006597e+01 2.176435
Air.Flow:Water.Temp 1.479097e+00 -2.078530
Air.Flow:Acid.Conc. 3.324893e-01 -2.201875
Water.Temp:Acid.Conc. 1.017941e+00 -2.093743
Air.Flow:Water.Temp:Acid.Conc. 1.674228e-02 2.112725
 Pr}(>|t|
```

| \# (Intercept) | 0.04954646 |
| :--- | :--- |
| \# Air.Flow | 0.04778701 |
| \# Water.Temp | 0.05851935 |
| \# Acid.Conc. | 0.04855129 |
| \# Air.Flow:Water.Temp | 0.05802734 |
| \# Air.Flow:Acid.Conc. | 0.04633763 |
| \# Water.Temp:Acid.Conc. | 0.05644977 |
| \# Air.Flow:Water.Temp:Acid.Conc. | 0.05453733 |

This is an interesting and complex case as we have a marginally significant three way interaction, and all other effects are at least marginally significant. We can exclude the three-way interaction to see if that clarifies the situation.

```
summary(lm((stack.loss ~ (Air.Flow + Water.Temp + Acid.Conc.)^2),
 data = stackloss))$coef
```

| \# | Estimate | Std. Error |
| :--- | ---: | ---: |
| \# (Intercept) | -108.13059141 | 176.49073390 |
| \# Air.Flow | 2.32653047 | 2.64482119 |
| \# Water.Temp | -2.78892775 | 8.64066216 |
| \# Acid.Conc. | 1.44055540 | 1.95825282 |
| \# Air.Flow:Water.Temp | 0.05012641 | 0.02807059 |
| \# Air.Flow:Acid.Conc. | -0.03188801 | 0.02967467 |
| \# Water.Temp:Acid.Conc. | 0.01184376 | 0.09472983 |
| \# | t value | $\operatorname{Pr}(>\|t\|)$ |
| \# (Intercept) | -0.6126701 | 0.5499176 |
| \# Air.Flow | 0.8796551 | 0.3938952 |
| \# Water.Temp | -0.3227678 | 0.7516411 |
| \# Acid.Conc. | 0.7356330 | 0.4740992 |
| \# Air.Flow:Water.Temp | 1.7857268 | 0.0958144 |
| \# Air.Flow:Acid.Conc. | -1.0745868 | 0.3007319 |
| \# Water.Temp:Acid.Conc. | 0.1250267 | 0.9022800 |

But in this case it does not - reality seems to require the three way interaction all factors and all interactions would be significant at $\mathrm{p}=0.06$. Fortunately, we $d o n ' t$ need to interpret this model verbally ${ }^{2}$ for it to be useful - we can predict which conditions will optimize the outcome, which would be useful in a process control context, even though those of us coming from analytical backgrounds may shudder at three-way interactions.

[^33]
### 13.3 ANCOVA

In some cases we have both numeric and categorical predictors. For example, the weed suppressiveness of a rye cover-crop depends partly on the biomass of the rye, which is strongly affected by planting and termination dates of the rye. In one study rye biomass was modeled as a function of planting date (early or late) and terminated at one of five harvest dates (numeric). We'll load some data and have a look.

```
Rye <- read.csv("../Data/Rye-ANCOVA-2008.csv", comm = "#",
 stringsAsFactors = TRUE)
head(Rye) # examine the data
```

The variable Tdate is days from the beginning of the growing season (April 15). We'd expect that rye that is terminated later will produce greater biomass.

```
summary(lm(RyeDMg ~ Tdate, data = Rye))
#
Call:
lm(formula = RyeDMg ~ Tdate, data = Rye)
#
Residuals:
\begin{tabular}{lrrrrr}
\# & Min & 1Q & Median & 3Q & Max \\
\(\#\) & -195.779 & -87.402 & 2.592 & 82.281 & 164.221
\end{tabular}
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 96.232 86.083 1.118 0.276
Tdate 16.963 2.715 6.249 2.74e-06 ***

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 107.3 on 22 degrees of freedom
Multiple R-squared: 0.6396, Adjusted R-squared: 0.6232
F-statistic: 39.04 on 1 and 22 DF, p-value: 2.739e-06
```

Sure enough, we see an influence of termination date (Tdate). The model suggests that rye terminated at the very beginning of the growing season would only produce $96 \mathrm{~g} \mathrm{~m}^{-2}$ which is a reasonable value, and that each day of delay in termination increases rye biomass by 17 g . But there could still be more going on here. The rye was planted in the autumn, and the later planting missed more of the warm autumn weather during it's early growth phase.

```
summary(lm(RyeDMg ~ Plant, data = Rye))
#
Call:
lm(formula = RyeDMg ~ Plant, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-256.62 -115.16 24.06 83.00 332.87
#
Coefficients:
Estimate Std. Error t value Pr (>|t|)
(Intercept) 689.25 46.68 14.766 6.73e-13 ***
PlantP2 -145.62 66.01 -2.206 0.0381 *

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 161.7 on 22 degrees of freedom
Multiple R-squared: 0.1811, Adjusted R-squared: 0.1439
F-statistic: 4.867 on 1 and 22 DF, p-value: 0.03812
```

This suggests that later planting in the autumn reduced biomass by $145 \mathrm{~g} \mathrm{~m}^{-2}$ . We should be able to combine these two effects with an ANCOVA.

```
summary(lm(RyeDMg ~ Tdate + Plant, data = Rye))
#
Call:
lm(formula = RyeDMg ~ Tdate + Plant, data = Rye)
#
Residuals:
Min 1Q Median 3Q Max
-122.967 -65.880 -5.537 58.567 183.033
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 169.04 64.12 2.636 0.015429 *
Tdate 16.96 1.96 8.656 2..27e-08 ***
PlantP2 -145.62 31.61 -4.607 0.000152 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
#
Residual standard error: 77.43 on 21 degrees of freedom
Multiple R-squared: 0.8208, Adjusted R-squared: 0.8037
F-statistic: 48.08 on 2 and 21 DF, p-value: 1.45e-08
```

In the ANCOVA model we can see that the both the planting date and growing time effects are very significant, and the $\mathrm{R}^{2}$ of this model is much better than either of the separate models. The early planted rye begins the growing season with about $170 \mathrm{~g} \mathrm{~m}^{-2}$ of biomass, while the later planted rye only has about $23 \mathrm{~g} \mathrm{~m}^{-2}{ }^{3}$. It is possible that the longer growth time is more beneficial in one group compared to the other. This would show in the model as a different slope (Tdate coefficient) for the groups.

```
model1 <- lm(RyeDMg ~ Tdate + Plant + Tdate:Plant, data = Rye)
summary(model1)
#
Call:
lm(formula = RyeDMg ~ Tdate + Plant + Tdate:Plant, data = Rye)
#
Residuals:
\begin{tabular}{lrrrrr}
\# & Min & 1Q & Median & 3Q & Max \\
\(\#\) & -136.928 & -59.276 & -5.537 & 59.179 & 169.072
\end{tabular}
#
Coefficients:
Estimate Std. Error t value Pr}(>|t|
(Intercept) 217.514 88.641 2.454 0.0234 *
Tdate 15.383 2.795 5.503 2.19e-05 ***
PlantP2 -242.565 125.358 -1.935 0.0673 .
Tdate:PlantP2 3.161 3.953 0.800 0.4333

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 78.1 on 20 degrees of freedom
Multiple R-squared: 0.8263, Adjusted R-squared: 0.8003
F-statistic: 31.71 on 3 and 20 DF, p-value: 8.487e-08
```

Here we see that the interaction term is not significant, so the slope (the effect of harvesting date) is the same for both groups, or (more accurately) the difference between the slope for the two groups is not different from zero ( $p=0.433$.

[^34]```
plot(RyeDMg ~ Tdate, data = Rye, col = Plant)
mcf <- summary(model1)$coef[, 1] #coefficient estimates only
abline(a = mcf[1], b = mcf[2])
abline(a = mcf[1] + mcf[3], b = mcf[2] + mcf[4], lty = 2,
    col = "red")
```


For a more detailed treatment of multi-way ANOVA, see Chapter 9 of "Statistics: An Introduction Using R" by Michael J. Crawley. Also see Chapter 16 of [Practical Regression and Anova using R] (https://cran.r-project.org/doc/ contrib/Faraway-PRA.pdf) by Julian J. Faraway, which is available as a pdf.

13.4 About Sums of Squares in R

Linear models in R are fit using the classic method of minimizing the sum of the squared residuals. This is simple enough and can be solved analytically. For more detail see SimpleR pg 77, or see [this page] (http://www.wired.com/ wiredscience/2011/01/linear-regression-by-hand/).

However, the F-tests used in ANOVA tests are also calculated using sums of squares - the F-test for an effect is the mean square for the effect divided by the mean square of the error, where the mean square is the sum of squares for that effect divided by the degrees of freedom for the effect

This is all pretty straightforward when considering a one-way ANOVA, or a twoor more way ANOVA with balanced data (no missing values). However, in the
real world of imperfect experiments and missing data it gets more complicated. R by default calculates what are known as sequential sums of squares, or Type I SS. Many other software packages provide what are known as Type III SS (There are also Type II SS).

The differences in which sums of squares are calculated explains why a model fit in R will not necessarily return the same results as if it were fit in SAS, SPSS, or Minitab. Note that this does not mean that \mathbf{R} is wrong. Type I SS are sequential, meaning the order of terms in the model matters. In many cases it can be argued that there is a logical order to the terms that reflects the design of the experiment (e.g. block comes first, etc.).

See this article for a more complete explanation of Type I, Type II, and Type III SS, and how they can be calculated in R.

13.5 Resistant Linear Models

There are resistant regression methods that are less susceptible to outliers. For this step we'll need to install the MASS package (install.packages("MASS") will download and install the package). We'll explore it a bit using the mtcars data.

```
library(MASS) # load the package 'MASS'
data(mtcars) # load the data
boxplot(hp ~ cyl, data = mtcars)
```


This boxplot should convice us that we may have a problem with heterogeneity of variance which might invalidate a linear model. Let's see how the resistant model compares. Since cyl is coded as numeric but is really a factor (taking only values 4,6 , or 8 in this data set), we'll model it as a factor.

```
summary(lm(hp ~ factor(cyl), data = mtcars))
#
# Call:
# lm(formula = hp ~ factor(cyl), data = mtcars)
#
# Residuals:
\# Min 1Q Median 3Q Max
# -59.21 -22.78 -8.25 15.97 125.79
#
# Coefficients:
# Estimate Std. Error t value }\operatorname{Pr}(>|t|
# (Intercept) 82.64 11.43 7.228 5.86e-08 ***
# factor(cyl)6 39.65 18.33 2.163 0.0389 *
# factor(cyl)8 126.58 15.28 8.285 3.92e-09 ***
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 37.92 on 29 degrees of freedom
# Multiple R-squared: 0.7139, Adjusted R-squared: 0.6941
# F-statistic: 36.18 on 2 and 29 DF, p-value: 1.319e-08
summary(rlm(hp ~ factor(cyl), data = mtcars))
```

\#
\# Call: rlm(formula $=\mathrm{hp} \sim$ factor (cyl), data $=$ mtcars)
\# Residuals:
\# Min 1Q Median 3Q Max
\# -53.001 -21.227 $-4.376 \quad 17.364131 .999$
\#
\# Coefficients:

\#	Value	Std. Error	t value
\# (Intercept)	82.6364	10.0218	8.2457
\# factor (cyl)6	38.1156	16.0706	2.3718
\# factor (cyl)8	120.3642	13.3922	8.9877

\#
\# Residual standard error: 32.35 on 29 degrees of freedom

The t-values are a bit larger for the resistant model. Note the resistant model does not supply p-values. This is because calculating p-values depends on making assumptions about the t-distribution which might not be met when regression assumptions are violated.

13.6 Specifying Contrasts.

In some cases we approach a data set with very specific questions, that we want to answer. Consider the warpbreaks data: two types of wool and three levels of tension, for 6 treatment groups:

```
data(warpbreaks)
unique(warpbreaks[, 2:3])
```

With 6 groups there are 15 possible comparisons, but the default treatment coding used in summary (lm) only tests 5 of these:

```
summary(lm(breaks ~ wool * tension, data = warpbreaks))$coef
# Estimate Std. Error t value
# (Intercept) 44.55556 3.646761 12.217842
# woolB -16.33333 5.157299 -3.167032
# tensionM -20.55556 5.157299 -3.985721
# tensionH -20.00000 5.157299 -3.877999
# woolB:tensionM 21.11111 7.293523 2.894501
# woolB:tensionH 10.55556 7.293523 1.447251
# Pr}(>|t|
# (Intercept) 2.425903e-16
# woolB 2.676803e-03
# tensionM 2.280796e-04
# tensionH 3.199282e-04
# woolB:tensionM 5.698287e-03
# woolB:tensionH 1.543266e-01
```

We're in luck if we want to compare: woolA:tensionL with woolB:tensionL (row 2), woolA:tensionL with woolA:tensionM (row3), woolA:tensionL with woolA:tensionH (row4). Row 5 represents the difference between the estimate of woolB:tensionM generated by adding estimates 1,2 , and 3 (the additive estimate) and the actual mean of woolB:tensionM (if this difference is small, we say there is not an interaction of the 2 terms). Row 6 is analogous to row 5 .
But what if we want to compare WoolA vs WoolB at each level of tension? We need to specify our own contrasts. We can easily see that these differences may be important by looking at the means:

```
with(warpbreaks, aggregate(breaks, by = list(wool, tension),
    FUN = mean))
```

The difference between rows 1 and 2,3 and 4 , and 5 and 6 show our differences, but don't test them. To test these we need to define a matrix of contrasts. This recreates the means for each contrast from the coefficients in the model.

```
m1 <- (lm(breaks ~ wool * tension, data = warpbreaks))
summary(m1)$coef
```

\# Estimate Std. Error t value
\# (Intercept) $44.55556 \quad 3.64676112 .217842$
\# woolB -16.33333 5.157299 -3.167032
\# tensionM -20.55556 5.157299 -3.985721
\# tensionH -20.00000 5.157299 -3.877999
\# woolB:tensionM $21.11111 \quad 7.293523 \quad 2.894501$
\# woolB:tensionH $10.55556 \quad 7.2935231 .447251$
\#
\# (Intercept) $2.425903 \mathrm{e}-16$
\# woolB $2.676803 \mathrm{e}-03$
\# tensionM $2.280796 \mathrm{e}-04$
\# tensionH 3.199282e-04
\# woolB:tensionM 5.698287e-03
\# woolB:tensionH $1.543266 \mathrm{e}-01$

So the treatment mean for woolA:tensionL would be the first coefficient only, or we could specify it as the sum of the product of the vector of all coefficients and the vector:c ($1,0,0,0,0,0$), which we'll name AL. The treatment mean for woolB:tensionL would be the first coefficient plus the second coefficient, or the sum of the product of the coefficients and: $B L=c(1,1,0,0,0,0)$. The difference between them is $\mathrm{AL}-\mathrm{BL}$ or $\mathrm{c}(0,-1,0,0,0,0)$. Similarly, woolA:tensionM is: $\quad A M=c(1,0,1,0,0,0)$ and woolB:tensionM is $B M=c(1,1,1,0,1,0)$ and the difference is $c(0,-1,0,0,-1,0)$. By extension, the final difference is $c(0,-1,0,0,0,-1)$.

Constructing these contrasts is the most confusing part of this procedure. You can confirm that the last one is correct by taking the sum of product of the first column of the coefficients and e.g $c(0,-1,0,0,0,-1)$ (the tension H difference). It will be the same as the wool difference for tensionH.

```
sum(summary (m1)$coef[, 1] * c(0, -1, 0, 0, 0, -1))
```

\# [1] 5.777778

```
means <- with(warpbreaks, aggregate(breaks, by = list(wool,
    tension), FUN = mean))
means[5, 3] - means[6, 3]
```

\# [1] 5.777778

We can put these three contrasts together into a matrix like this (note there is one row of the matrix per contrast):

```
cont.mat = matrix(c(0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0,
    0, -1, 0, 0, 0, -1), byrow = TRUE, nrow = 3)
cont.mat
```

\#	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	$[, 5]$	$[, 6]$
\# [1,]	0	-1	0	0	0	0
\# [2,]	0	-1	0	0	-1	0
\# [3,]	0	-1	0	0	0	-1

Now we can calculate our comparisons using the function glht() in the package multcomp (you will probably need to install it unless you already have done so - install.packages("multcomp").

```
library(multcomp)
tests <- glht(m1, linfct = cont.mat)
summary(tests)
```

\#
\# Simultaneous Tests for General Linear Hypotheses
\# Fit: lm(formula = breaks ~ wool * tension, data = warpbreaks)
\#
\# Linear Hypotheses:
\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
\# $1=\begin{array}{lllll}0 & 16.333 & 5.157 & 3.167 & 0.00795\end{array}$ **
\# $2=\begin{array}{lllll}0 & -4.778 & 5.157 & -0.926 & 0.73187\end{array}$
$\begin{array}{llllll}\# & = & 5.778 & 5.157 & 1.120 & 0.60281\end{array}$
\# ---
\# Signif. codes:
\# $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\# (Adjusted p values reported -- single-step method)

And there you have it. The first test (wool at tension L) is significant, but the others aren't. Notice that here we are only making 3 comparisons rather than all 15 , and so we conserve our statistical power.

As noted above, making the contrast matrix is the key (and confusing) step here. Be aware that subsequent changes to the model will change the contrast matrix.

13.6.0.1 For more information:

Chapter 9 ("Statistical Modeling") in "The R Book" by Michael Crawley has a very good introduction to this topic beginning at Section 9.25. He includes details on several other approaches and goes into more detail.

A good introduction to testing contrasts using the package "multcomp" can be found [here] (http://www.ats.ucla.edu/stat/r/faq/testing_contrasts.htm)

13.7 More Complex Designs

It is beyond the scope of these notes to fully consider more complex models such as split-plot designs, nested designs, and mixed effects models. The chapter on "Analysis of Variance" (Ch11) in "The R Book", by Michael Crawley, has some very good examples, and several are to be had by searching the "R-help" mailing lists (See the "Support Lists" tab in the search results at Rseek).

A split-plot design means that one treatment or factor is applied to larger units ("whole plot" or "main plot"), and subunits of those larger units ("subplot") receive other treatments. Here we'll compare two factors - "A" vs "B" and " 1 " vs " 2 ". In a completely random design (CRD) all combinations are randomly assigned to locations (First figure). In a split plot one factor (in this example, "A" vs "B") is assigned to larger plots, and the subplots are randomly assigned to the other factor (in this case " 1 " or " 2 ")

By way of an introductory example, we'll consider a rather simple split-plot design here. The data is from the study on cereal rye winter cover-crops introduced above. Cereal rye was sown at two dates in the autumn (PD, a factor) and was killed at 5 dates in the spring (Tdate, given as days after April 15), when biomass (RyeDM, $\mathrm{g} \mathrm{m}^{-2}$) was measured. Planting date was the main plot (2 per block) with the subplots randomly assigned to combinations of termination date (5 per main plot) ${ }^{4}$.

```
# factorial design with 12 sub-plots per main plot.
Rye <- read.csv("../Data/RyeSplitPlot.csv", comm = "#",
s stringsAsFactors = TRUE)
summary(Rye)
```

\#	P.date	T.date	WdCon	Rep	RyeDM
\#	P1:20	T1:8	SC: 40	I :10	Min. : 104.0
\#	P2:20	T2:8		II :10	1st Qu.: 454.8
\#		T3:8		III:10	Median : 636.0
\#		T4:8		IV :10	Mean : 630.0
\#		T5:8			3rd Qu.: 816.0
\#					Max. :1256.0
\#	P.	day		day	
\#	Min.	:257.0	Min.	:480.0	
\#	1st Qu.	:257.0	1st Qu.	. 492.0	
\#	Median	:272.5	Media	:500.0	
\#	Mean	:272.5	Mean	:500.8	
\#	3rd Qu.	:288.0	3rd Q	. 513.0	
\#	Max.	:288.0	Max.	:519.0	

[^35]We can see we have 2 levels of PD, 5 of Tdate, and 4 for Rep (block).
The simplest approach to analyzing this as a split plot is to use the function $\operatorname{aov}()$ and specify the error structure using the argument Error. First we'll ignore the split-plot:

```
summary(aov(RyeDM ~ Rep + P.date + T.date, data = Rye))
```

\#	Df	Sum Sq	Mean Sq F value	Pr (>F)		
\# Rep	3	72833	24278	1.938	0.144014	
\# P.date	1	216531	216531	17.283	0.000235	$* * *$
\# T.date	4	2043518	510879	40.778	$6.28 \mathrm{e}-12$	$* * *$
\# Residuals	31	388379	12528			

It is easy to fit this model and forget that it is wrong, since the split plot design has not been included. Now we'll fit the split-plot model.

```
summary(aov(RyeDM ~ Rep + P.date + T.date + Error(Rep/P.date),
    data = Rye))
```

```
#
# Error: Rep
# Df Sum Sq Mean Sq
# Rep 3 72833 24278
#
# Error: Rep:P.date
# Df Sum Sq Mean Sq F value Pr(>F)
# P.date 1216531 216531 8.152 0.0648 .
# Residuals 3 79686 26562
# ---
# Signif. codes:
# O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Error: Within
# Df Sum Sq Mean Sq F value Pr(>F)
# T.date 4 2043518 510879 46.34 5.92e-12 ***
# Residuals 28 308693 11025
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The Error (Rep/Plant)tells us that the units of the variable Plant are within the units of Rep. The units of Tdate are within Plant, but this doesn't need to be specified as this is the smallest unit. This gives us an ANOVA table split according to the error term used in the F test, and we can see that the main plot (Plant) effect is tested against the interaction of block and main plots (Rep:Plant). This results in a larger (in this case marginally significant) p -value. The larger p -value is because the correct error term is used here. A split-plot design has more power to detect differences in the split-plot factor and less power to detect those in the whole plot factor. Incorrect analysis of these designs is surprisingly common.

Notice that the predictor variables (effects) in the right-hand side of the formula are listed from physically largest to smallest rather than in order of our interest this probably makes sense given that we are working with Type I sums of squares here - there is a natural ordering of the effects based on the construction of the experiment.
Later we'll consider another way to test this is as a linear mixed-effects model using the function lme() from the package "nlme".

13.8 Exercises

1) The built in data set trees has data for diameter, height, and timber volume for 31 trees. How well does the volume of a cone (0.333 x height x radius $^{2} \mathrm{x} \pi$) predict the timber volume (fit a regression between the measured and calculated volume). Note that volume is in cubic feet, height is in feet, and diameter is in inches (divide by 12 for feet). How does this differ from the model that uses the product of height and diameter squared as the only predictor? Note on units The variable named "Girth" is actually diameter according to the help file for the data set. See ? trees.
2) For the beans data test whether shoot biomass alters the relationship between root biomass and root length we explored in exercise 1 of Chapter 11. (That is, is there an interaction between shoot biomass and root biomass in modeling root length)
3) In exercise 3 and 4 of Chapter 12 we began looking at the "electric bill" data. Here is an ANCOVA problem. In April of 2008 (month 57 of occupancy) we added insulation to the roof of the house. How did this affect the relationship between daily energy use and average temperature? Add a factor for with and without insulation, and add this factor to the quadratic model. How does this affect the fit of the model (consider residual distributions and R^{2})
4) Does the effect of adding insulation alter the coefficients of the relationship between temperature and daily electric consumption? (Do the avgT and I (avgT^2) terms interact with the insulation factor?)
EXTRA What is wrong with the model in \#3 and \#4?

Chapter 14

Productivity Tools in R

More advanced documentation and managing projects

14.1 Introduction

Since version 0.96.122, RStudio has included tools to allow easy use of markdown to produce dynamic reports. Here we'll briefly explore how we can use this to document analytical work in R. (Markdown is a simple markup language created by people with an appreciation for irony). There are many parallels between using markdown and compiling notebooks from R scripts (Chapter 4) - markdown just gives a slightly higher level of control.

As noted in Chapter 4, to fully document statistical analysis, we need to have: 1) the R code; 2) the output from R code (statistical tables, etc); 3) the figures we generate; and 4) the appropriate commentary and narrative.
I've noted earlier the importance of keeping well commented code files, which can cover 1) and 4), but the code has to be run to create 2) and 3). In Chapter 4 we saw how the "compile notebook" functionality in knitr allows us to create html documents from our R script files. While generally adequate for the purposes of homework assignments, one might find that they don't offer all the features that one might want.

The combination of knitr and markdown solve this problem - we can have all four components in one file ${ }^{1}$. The highlights are:

1. Code and commentary stored in one file.

[^36]a. both data manipulation and analysis code stored
b. ability to have extensive commentary w/o commenting out every line
c. ability to apply basic formatting to non-code commentary
d. ability to keep code that is not run for reference
e. ability to produce figures without showing the code that produces them
2. Statistical output and figures easily kept with the code that produced them.
3. Easy to go back and re-run or update analyses.

Using markdown and knitr in RStudio it is almost trivially easy to put this all in one file. The markdown file is easily readable plain text and permits simple text formatting. R code is included in discrete "chunks". Knitr will process ("knit" or "compile") the markdown file into HTML (or pdf or .docx) that includes the code and the output from that code.

Knitr "chunk options"" allow the user to specify whether code chunks are evaluated, (if something didn't work but you want to keep a record of how you tried it, a chunk that isn't evaluated is perfect), and whether the code itself is shown in the HTML file (perfect for figures). Chunk options also allow size of figures to be customized.

14.2 Getting stated with markdown

In the RStudio editor pane choose File $>N e w>R$ Markdown. You'll be prompted to select type - at this point select "Document". If you haven't used knitr already you may be prompted to install the knitr package, in which case type install. packages("knitr", dep=T). RStudio will open a new tab in the editor that is a basic template.

Examining this template will reveal some special features:

1. Unlike an R script file which can only contain comments and R code, a markdown file contains plain text and some special "chunks" delimited by special "fences".
2. Code chunks are fenced by lines containing ' ${ }^{\prime}$, , and contain R code and comments.
3. For the "opening fence" the ' ${ }^{\prime}$ ' is followed by ' $\{r\}$ '
4. In some chunks there are 'chunk options' following the ' r ' in curly braces.

For example ` \(\{r\), echo=FALSE\}`tells knitr to execute the code in this chunk but not to include the code itself in the output. This can be used to show only the plots and note the code that produced them. ${ }^{2}$
5. Some areas within the plain text part of the file are fenced with single `, such as "echo=FALSE". These areas are formatted as code in the compiled file. This is known as inline code.
6. There is a header that is fenced by lines containing "-". This contains details such as the title, the author and date, and the type of output. Other features can be added here, such as table of contents, but that is beyond this basic intro. ${ }^{3}$

Markdown is a simple markup language, and text not within code chunks is formatted according to markdown rules. Up to six levels of headers are possible, as well as italics, boldface, super and subscript, and simple tables. LaTeX style equations can also be included. More document customizations incuding tables of contents are possible, but are not discussed here ${ }^{4}$.

14.2.1 Key Features

Inline code such as `mean(some.data)` will not be evaluated, but adding an r followed by a space (e.g. 'r mean(some.data)') at the beginning of the inline code will flag that inline code to be evaluated. This is useful when discussing results of an analysis, e.g. inserting a p-value into your text by linking to the analysis.

The ". . " in \{r . . .\} stand for "chunk options". The first option is preceded by a space, and all others are separated by commas, without any spaces. The first option is a "chunk name". You can navigate to named chunks from the pulldown menu on the lower left margin of the editor tab. The options commonly used options are:

- eval=FALSE - means don't evaluate this chunk - useful for keeping code you don't want to run, but don't want to delete.
- echo=FALSE - means run the code but don't print it - useful for figures where you want to show the figure not the code you used to make it. If I'm preparing a report for my boss, I use this a lot.
- fig.width=x; fig.height=y - controls width and height of figures (dimensions in inches).

[^37]- Note that the echo and eval chunk options can specify line numbers, so echo=-1 means echo all the code in the chuck except line 1.
- fig.cap - allows you to specify captions for a figure. Implies one figure per chunk.

14.2.2 Other useful information:

- Ctrl+Alt+I inserts a new chunk (Mac: Opt+Cmd+I)
- Ctrl+Alt+C runs the current chunk
- Ctrl+Alt+N runs the next chunk
- Ctrl+Enter runs the current line just like in an R script file
- a line like:
`knitr: :opts_chunk\$set(fig.width=4.5,fig.height=3,tidy=TRUE, cache=TRUE) `
early after the title block sets global options for a document. The cache=TRUE option speeds up compilation for the second and following times a document in knit, but can occasionally cause surprise errors - use at your own risk
* As with the notebook feature, R code run when knitting a document is evaluated in a separate environment. This means that your R workspace is not accessible by this code, so you have to make sure ALL the necessary code is in your chunks. This most often causes errors when data or packages that the code needs haven't been loaded. Another possible source of errors is not having the CRAN mirror set correctly. ${ }^{5}$
Click the 'Help' menu in the RStudio menubar and select "Markdown Quick Reference" to bring up a short reference in the help viewer. A more extensive description is available online - selecting "Using R Markdown" from the "?" will open this link in your browser.

Finally, the full list of chunk options is detailed at the knitr website. Note that not all of the options listed here function in markdown - some only operate in "sweave" files (.rnw), which allow R code to be embedded and evaluated within LaTeX documents ${ }^{6}$.
One of the great advantages of this method of documenting your work is that you can easily update an analysis by updating the data file and running the analysis again. Important conclusions (e.g. p-values) can be in inline code chunks, so R just updates them too.

An important note - each code chunk gets a fresh graphics device, so if you ran (for example) par (mfrow=c(1,2)) to divide the plotting window in one chunk, it will not be divided in the next chunk.

[^38]The file "knitr-markdown demo.rmd" in your "Essential R" folder is a demonstration of many features of R markdown.

14.3 Managing projects

Using a tool like markdown makes it easier to keep your thinking documented. One of the challenges of any kind of analytical work is keeping track of many different files. Typically most users use directories (folders) to group documents related to particular projects. RStudio makes this easy with project feature. The project menu is located in the upper right corner of the RStudio window. (Highlighted in red)

Figure 14.1: Project Menu

If you click on the project menu you see options to create a new project, to open a project, and there are shortcuts to the recent projects.

When a project is created it is associated with a directory, and a file with extension .Rproj is created in the folder. The workspace and the R Studio window state is saved. That means that if you open a saved project it opens with the same files open in the editor and the same objects in the workspace as when it was closed. This is very handy. For those (like me) who don't want to be completely reliant on RStudio, it is nice to know that your script files are saved normally and the workspace is saved as a hidden file (*.Rdata), so you're not "locked in" to using RStudio when you use the project feature.

RStudio also includes integration for version control tools (git and subversion) for projects. It is relatively simple to host an R project on e.g. github for sharing with multiple users, version control, and offsite backup. For details see [RStudio.com] (https://support.rstudio.com/hc/en-us/articles/200532077? version $=1.2 .5033 \&$ mode $=$ desktop)

14.4 Using R and LaTeX via Knitr

Those who need much more control in formatting, or who already use LaTeX will be glad to know that knitr supports the inclusion and execution of R code in the context of LaTeX documents. To explore the features of LaTeX is beyond the scope of this class, but we will demonstrate the basic features.

You can open a new .rnw file from the file menu: File > New > Rsweave. Or open the file "RNW-test.Rnw" in the "Code Files" directory. This is a minimal example.

Notice a few features: Code blocks begin with <<>>= and end with @. Chunk options can be specified between the << and >>= that precede the code block.
To compile this to .pdf, you need to configure RStudio a bit ${ }^{7}$. Open RStudio Preferences, and select the "Sweave" tab. Under "Weave Rnw files using:" and select "knitr". You should now be able to click "Compile PDF" from the top of the editor pane.

There are many examples such as this online.

14.5 Exercises

1) Take the homework assignment from last chapter and reformat it as an .rmd document (this means convert all the commentary to text, using appropriate headings; code comments can be left as comments). Choose one graph and hide the code that produces it (only for this assignment!), and use inline code to show results from some model or calculation. Compile this to an html file, and submit the html file for your homework.

[^39]

Figure 14.2: Preferences

Chapter 15

Visualizing Data I

Enhancing scatter plots

15.1 Introduction

So far we have used R's graphics in fairly straightforward ways to examine data or look for model violations. But sometimes we need to do more. While creating publication quality plots is not something everyone will do, being able to create more complex graphics can be a great assist in data analysis, and the ability to customize graphics to visualize data is one of the strengths of R^{1}.

In this chapter and the next we build up some pretty complex figures from basic building blocks. Some of the examples are fairly complex - but my hope is that you can follow along to see what is possible by combining basic building blocks.

I chose the title "visualizing data" here because while one goal of making figures is communication, I often find (especially with more complex data) that I can understand the data better when I find the right way to visualize it. A resource that may be useful when considering how to visualize some data is the R graph gallery.

There are some R packages that provide more "advanced"" plotting interfaces (e.g. ggplot2 and lattice), and you may want to have a look at these. Here, in the spirit of learning "essential" R, we'll focus on base R. Learning to use the basic plotting functions and graphical parameters can provide great flexibility in visualizing data. In this session we'll focus on scatter plots.

[^40]
15.2 Basic Scatter Plots

15.2.1 A simple scatter plot

Here we'll look at the relationship between weed seed-bank density (number of weed seeds in soil) and weed density (number of growing weed plants) in conventional and herbicide-free plots. (This data set only contains the means).

```
DT <- read.delim("../Data/DataVizEx1.txt", stringsAsFactors =
@ TRUE)
summary(DT)
```


We have seed-bank density as a factor (Den) and as a continuous variable (SeedDen), and weed density (weeds per meter ${ }^{2}$) at four time points (Den1 to DenF). We'll look at the relationship between seed-bank density and weed density at the first count. We'll use with() to avoid repetition of DT\$.

```
with(DT, plot(SeedDen, Den1)) # make the plot
plot(Den1 ~ SeedDen, data = DT, col = Manag)
```


We have two points at each of three levels of weed seed-bank density. Is there a consistent difference between our two treatments - O (rganic) vs. C (onventional)? In the second plot we coded point color by treatment.

We can see that one set of points is consistently above the other. Which is which? They are coded as C and 0 , and the level that is first alphabetically (C in this case) will be represented in black, the next in red, and so on through all the colors in the palette (use palette() to view or change the palette).

Let's try adding some lines here - we'll use lines() draws lines (defined by vectors $\mathrm{x}=$ and $\mathrm{y}=$) on an existing plot.

```
with(DT, plot(SeedDen, Den1, col = Manag))
with(DT, lines(SeedDen, Den1))
with(DT, plot(SeedDen, Den1, col = Manag)) # second plot
lines(x = c(1000, 2000, 500), y = c(30, 45, 27)) # not same as
lines(x = c(500, 1000, 2000), y = c(27, 30, 45) - 1, col = "red")
```


This line was not exactly what we had in mind. A quick look at the data is instructive $-300,300,1350,1350,3150,3150$ - there are 2 values for each x value. The line created by lines() follows the $\mathrm{x}=$ vector literally -2 at 300,2 at 1350 , etc. The order of elements in the $x=$ and $y=$ arguments matters. We can confirm this by plotting some arbitrary lines on the second plot (the second is offset -1 in the y direction for clarity). The same three points are plotted but in different order.

15.2.2 A simple scatter plot revisited

Let's try again with the same data. We'll use different symbols for our treatments, and we'll add proper axis labels. We'll fully parse the code following the code block and plot.

```
op <- par(mar = c(4, 4.5, 0.5, 0.5))
sym <- c(21, 24) # define vector of symbols
with(DT, plot(SeedDen, Den1, pch = sym[Manag], ylab =
@ expression(paste("Weed density",
    " (plants ", m^-2, ")")), xlab = expression(paste("Weed
    s seedbank (seeds ",
    m^-2, ")"))))
# plot with nice axis labels
lines(DT$SeedDen[DT$Manag == "C"], DT$Den1[DT$Manag == "C"],
    lty = 1)
# add line for trt C
lines(DT$SeedDen[DT$Manag == "O"], DT$Den1[DT$Manag == "O"],
```

```
    lty = 2)
# add line for trt O
legend("bottomright", inset = 0.025, pch = sym, lty = 1:2,
    c("Conventional", "Hebicide Free")) # add legend
```


That is a basic, but clean plot that clearly shows the differences. There are quite a number of things to note here since we are including many common elements of quality plots (most of which we'll use repeatedly in this chapter and the next): 1. We selected 2 plotting symbols in our vector sym, and indexed these based on levels of the variable Manag (the pch=sym[Manag] in the plot command, analogous to the use of col=Manag in the preceding plot). "pch=" means "plotting character"; see ?points for a list of the valid plotting characters. 2. We used expression() to allow a superscript in our axis label, and paste to combine the mathematical expression ($\mathrm{m}^{\wedge}-2$) with the plain text ("Weed density (plants " and ")") parts of the label ${ }^{2}$.
3. We used logical extraction ([DT\$Manag=="C"]) to specify which part of the data to plot for each of the two lines.
4. lines() creates a line from point to point, not a trend-line - we could use abline (lm (De1~Den2, data=DT) with the appropriate logical extraction for that).
5. while legend () can be complex, in many cases (like this one) it is pretty simple - we just specify line type (lty=), plotting symbol (pch=), and the legend text.
6. We used $\operatorname{par}(\operatorname{mar}=\mathrm{c}($ bottom,left, top,right)) to set the margin around

[^41]each plot. mar= is expressed in lines of text, so it changes as cex= is changed (this assures that margins will be large enough for axis labels). Here we use low values for top and bottom.

Note: It is a worthwhile exercise is to take the code for this last plot and go through it line by line, commenting out lines and changing arguments to see how they work.

15.3 Multi-Panel Plots I: Layout

It is often the case that we want to show multiple graphs at once in a combined layout. We've seen how par(mfrow=c(rows, columns)) can be used to split the plotting window. However, the function layout() provides a much more flexible tool to do this.

```
layout(matrix(c(1, 2, 3, 3, 0, 4), nrow = 3, byrow = TRUE),
    heights = c(1, 1.5, 1), widths = c(1, 1.5))
layout.show(4) # show the first 4 plots in the layout
```


A couple of things to notice here: 1. layout () takes as it's first argument a matrix of plot numbers
2. Plot widths and heights can be manipulated
3. Not all parts of the plotting window need to contain plots
4. layout.show() lets us see the layout

Since this layout contains 4 plots, the next 4 times the plot command is called
(unless new=TRUE is used to force over-plotting - see ?par or the discussion of adding a second y axis near the end of this chapter for more).

When developing complex graphics, I often find it very useful to force my plot to a specified size. This lets me be sure that my choices for symbol and text size, legend placement, margins, etc. all work together the way I want them to ${ }^{3}$. There are several ways to do this. For developing a plot I use the function quartz(title, height,width) ${ }^{4}$ (quartz() is OSX only) or x11 (title, height, width) (Linux or Windows) to open a new plotting window whose size I can control. Alternately, in RStudio you can choose "Save plot as image" from the "Export" menu on the "Plots" tab, and then specify the dimensions you want for the plot. If using markdown the chunk options fig.width= and fig.height= allow you to control plot size in the final document ${ }^{5}$.

Here we'll make a multi-panel figure with 3 plots. Each panel will be similar to the scatter plot we made in part 2 , but will show other response variables, and the response variables are called by column number rather than by name. As before, we'll parse the code after the plot.

```
layout(matrix(c(1, 2, 3, 0), nrow = 4), heights = c(1, 1,
    1, 0.5))
sym <- c(21, 24) # plotting characters to use
par(mar = c(0.1, 4.3, 0.1, 1), bty = "l")
# set margins and plot frame type plot 1
with(DT, plot(SeedDen, DT[, 7], pch = sym[Manag], xaxt = "n",
    xlab = "", ylab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 7],
    lty = 1)
lines(DT$SeedDen[DT$Manag == "0"], DT[DT$Manag == "0", 7],
    lty = 2)
text(300, max(DT[, 7]) * 0.97, "Mid season density", pos = 4,
    cex = 1.2)
mtext(side = 2, line = 2.5, at = -1, text =
@ expression(paste("Weed density (plants ",
    m^-2, ")")), cex = 0.9)
legend("bottomright", inset = 0.025, pch = sym, lty = 1:2,
    c("Conventional", "Herbicide free"))
## plot 2
with(DT, plot(SeedDen, DT[, 8], pch = sym[Manag], xaxt = "n",
```

[^42]```
 xlab = "", ylab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 8],
 lty = 1)
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O", 8],
 lty = 2)
text(300, max(DT[, 8]) * 0.97, "Final density", pos = 4, cex =
@ 1.2)
plot 3
with(DT, plot(SeedDen, DT[, 4], pch = sym[Manag], ylab = "",
 xlab = ""))
lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C", 4],
 lty = 1)
lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "0", 4],
 lty = 2)
text(300, max(DT[, 4]) * 0.97, "Final biomass", pos = 4, cex =
-> 1.2)
mtext(side = 1, line = 2.5, text = expression(paste("Weed
@ seedbank (seeds ",
 m^-2, ")")), cex = 0.9)
mtext(side = 2, line = 2.5, text = expression(paste("Biomass (g
@",
 m^-2, ")")), cex = 0.9)
```



This is a fair amount of code for just one figure (though a lot of it is repeated between panels). Things to notice: 1. The call to layout() creates a space for the common $x$-axis below the bottom plot - the 0th plot - try layout.show(3). Alternately we could have skipped layout() and used the arguments oma $=c(4.2,0,0,0)$, mfrow $=c(3,1)$ in the initial call to $\operatorname{par}()$. The approach we used here is a bit more flexible, as we can size the plots differently if we wanted to, which we couldn't do using mfrow=. 2. legend() was only needed once because all the plots have the same legend.
3. the graphical argument xaxt=" n " was used to suppress the plotting of the x axis in the first 2 plots.
4. To keep x and y axis labels from printing we used $\mathrm{xlab}=" \mathrm{"}$ and $\mathrm{yl} \mathrm{ab}=\mathrm{"}$ " in all the plots. We could have added the axis label for the final plot using xlab=, but we would also need to add the argument $\mathrm{xpd}=\mathrm{NA}$ to allow plotting to overflow into the adjacent area.
5. The "Weed density" y axis label was added in plot 2 using mtext() - in prin-
ciple it could have been added in any of the plots, since the at= argument allows us to specify where on the axis it will be centered. at=2 specifies centering at $\mathrm{y}=2$. (Panels $1 \& 2$ have the same y axis units so we've centered the label over both of them).

### 15.3.1 Loops for multi-panel figures.

The preceding plot required $\sim 30$ lines of code. This is typical for multi-panel plots, at least using base R. ggplot2 and lattice have functions that make something like this simpler, but I usually stick with base $R$, partly because I know I can add elements to the plot. Notice that when you look at the code, most of it appears repeatedly with only minor variations. This might suggest using a loop. We won't re-create the plot here for brevity's sake, as it is essentially identical to the above plot. But I encourage you to run this code and look at how it works - you'll want to size the plotting window as discussed above.

```
par(mfrow = c(3, 1), oma = c(4.1, 0, 1, 0), mar = c(0.1, 4.3,
 0.1, 1), bty = "l")
vars <- c(7, 8, 4) # the column # for each response variable
sym <- c(21, 24) # plotting characters to use
labs <- c("", "", "", "Final biomass", "Rye", "Rye termination",
 "Mid season density", "Final density") # plot labels
for (i in vars) {
 # begin loop for panels
 with(DT, plot(SeedDen, DT[, i], pch = sym[Manag], xaxt = "n",
 xlab = "", ylab = "")) # plot the ith column
 lines(DT$SeedDen[DT$Manag == "C"], DT[DT$Manag == "C",
 i], lty = 1)
 # add lines
 lines(DT$SeedDen[DT$Manag == "O"], DT[DT$Manag == "O",
 i], lty = 2)
 text(300, max(DT[, i]) * 0.97, labs[i], pos = 4, cex = 1.2)
 if (i == 4) {
 # add x axis for the last plot only (i==4)
 axis(side = 1, at = seq(500, 3000, 500))
 mtext(side = 1, line = 2.5, text = expression(paste("Weed
 s seedbank (seeds ",
 m^-2, ")")), cex = 0.9)
 mtext(side = 2, line = 2.5, text =
 \hookrightarrow expression(paste("Biomass (g ",
 m^-2, ")")), cex = 0.9)
 }
 if (i == 7)
 {
 mtext(side = 2, line = 2.5, at = -1, text =
 @ expression(paste("Weed density",
```

```
 "(plants ", m^-2, ")")), cex = 0.9)
 # y axis label for first 4 plots
 legend("bottomright", inset = 0.02, legend =
 c("Conventional",
 "Herbicide free"), pch = sym, lty = c(1, 2),
 ncol = 2)
 } # y axis for last plot
} # end loop for panels
```

Things to notice: 1. the loop is indexed by the vector vars which refers to the column numbers of the response variables.
2. the legend in the first plot is side-by-side rather than stacked - the argument ncol=2 allows this.
3. the code to create the $x$-axis for the final plot could have been moved outside the loop, avoiding another if().

Was it worth it? The code was somewhat reduced - 18 vs 24 lines of code. I'm not sure that justifies the added complexity. The main benefit (in my experience) is that the "guts" of the plot are only here once - this makes it much simpler to change something (plotting character or line type) and keep all the panels consistent. This suggests that it is more likely to be worth using a loop for a figure if all panels are very similar and when there are many panels.

### 15.4 Adding a Secondary $y$-axis

Occasionally we want to add a second $y$-axis to a plot to plot more than one response variable. Since plot() also creates a new coordinate space with appropriate units, this does not seem that it would help us.

One way this can be done is using points () to add the second variable, but first we'd need to convert the second response variable to the same scale as the first, and we might need to fool around with the ylim argument in the initial plot command. Workable, but probably a hassle.

There is an easier way, though it may seem counter-intuitive. One of the arguments to par() is new=. A value of new=TRUE (counter-intuitively) tells R to treat the current graphics device as if it were a new device. This means that a new coordinate space is calculated, and a second plot can be made without the first having been erased.

```
par(mar = c(4.1, 4.1, 3, 4.1))
beans <- read.csv("../Data/BeansData.csv", comm = "#",
stringsAsFactors = TRUE) # load data
with(beans, plot(ShtDM, RtDM, xlab = "Shoot biomass (g)",
```

```
 ylab = "Root biomass (g)"))
par(new = TRUE)
with(beans, plot(ShtDM, rt.len, xaxt = "n", yaxt = "n", ylab =
-> "",
 xlab = "", pch = 24, bg = "grey"))
axis(side = 4)
mtext(side = 4, line = 3, "Root length (m)")
legend("top", inset = c(0, -0.15), pch = c(21, 24), pt.bg =
c("white",
 "grey"), legend = c("Biomass", "Length"), ncol = 2, xpd = NA,
 cex = 0.9)
```



Notice the inset=c (0,-0.15) and xpd=NA in the call to legend () - This allows the legend to plot in the marginal space, outside the plot area. If you run this command without the xpd=NA you will see why it was added. NOTE: These two y variables may not really good candidates for this type of presentation!

In the last two sessions we have covered the most commonly used graphical tools in R (well, in base-R anyway). These are most of the tools you need to make most of the figures you might need to make, and enough base to learn how to make others.

### 15.5 Summary

In this chapter we've looked at several scatterplots and at how lines, points, and secondary axes can be added to plots. In addition we've explored creating multi-panel plots. These are pretty basic tools which can be applied to a wide range of graphics.

### 15.6 Exercises

1) We'll revisit the electric bill data once more. In the Chapter 13 exercises we fit an ANCOVA to this data. Plot this ANCOVA (not the residuals), showing the two curves and two parts of the data with distinct symbols, and with properly formatted axes and labels (i.e., Kilowatt hours per day should be shown as " $\mathrm{KWHd}^{-1}$ ".)
2) Using the electric bill data, plot daily energy use (kWhd.1) as a function of average temperature (avgT). Add a second $y$ axis to show cost. Include a legend (to clarify, this means average temperature is on the $x$-axis.)

## Chapter 16

## Visualizing Data II

## Errorbars and polygons

### 16.1 Introduction

In the last chapter we built some rather complex multiple-panel scatter plots. Here we'll consider some additional ways that scatter plots ( $\mathrm{x}, \mathrm{y}$ plots) can be enhanced, principally by adding error bars and polygons or ribbons.

### 16.2 Scatter Plot with Error Bars

This figure will illustrate an ANCOVA between the biomass of a rye crop and the the date at which it was cut (covariate) for two different rye planting dates (factor variable). In this figure we'll show the variability of biomass at each cutting date using error bars, and show the ANCOVA line for each of the two levels of planting date in two years. First we'll introduce the function arrows() which we'll use to make error bars.

```
op <- par(mar = c(4, 4, 0.5, 0.5))
plot(1:10, 1:10, type = "n")
arrows(x0 = 1, y0 = 6, x1 = 1, y1 = 4)
arrows(1.5, 8, 1.5, 2, code = 3)
arrows(2, 6, 2, 4, code = 3, angle = 90)
arrows(2.5, 6.5, 2.5, 4.5, code = 3, angle = 90, length = 0.1)
x <- c(3, 5, 7)
y <- c(5, 4.5, 6)
```

```
z <- c(2, 1, 1.5)
arrows(x, y - z, x, y + z, code = 3, angle = 90, length = 0.1)
```



## 1:10

Things to notice: 1. arrows () takes four points, $x 0=, y 0=, x 1=, y 1=$ that define the ends of the arrows.
2. code $=3$ puts arrows at both ends of the arrow
3. angle $=90$ makes the arrow look like an error bar
4. length controls the length of the arrowhead or crossbar
5. arrows () is happy to take a vector as an argument, allowing one call to arrows () to create multiple error bars.

To make the plot we first need to load the data and examine it. We'll use a dataset for the plot that includes the means and standard errors, and we'll an anova table to the plot that shows an ANCOVA fit on the full data.

```
RyeMeans <- read.delim("../Data/Rye ANCOVA.txt", comment = "#",
 , stringsAsFactors = TRUE)
head(RyeMeans) # examine the data
RyeMeans$Term.DOY # not in order
```

```
[1] 117 137 128 149 137 155 117 137 128 149 137 155 118
[14] 142 128 152 140 160}118)142 128 152 140 160
```

```
RyeMeans <- RyeMeans[order(RyeMeans$Term.DOY),] # sort the data
\rightarrow \text { by Term.DOY}
PLOT
range(RyeMeans$MeanDM + RyeMeans$DMse) # ~110 to ~1100)
[1] 111.885 1115.230
range(RyeMeans$Term.DOY) # find x range (~115-160)
```

\# [1] 117160

```
levels(RyeMeans$YrPd)
```

```
[1] "2008 P1" "2008 P2" "2009 P1" "2009 P2"
```

Things to notice: 1. We sorted the data frame using RyeMeans<-RyeMeans [order (RyeMeans\$Term.DOY), ]. This is just standard $R$ indexing: before the comma we specify the rows; here we just say the rows given by the function order () applied to RyeMeans\$Term.DOY. 2. The variable YrPd lists the year and the planting date together as a single factor. This is a convenience for plotting. The original ANCOVA was fit with the year and rye planting date as separate factors, and included their interaction, (which was not significant).
Now we'll plot the data. As before, if you run this code you may want to set your figure size to width $=6.75$, height $=5.25$.

```
quartz(height = 5.25, width = 6.75)
only run in console, not evaluated on compile pdf(file
= 'RyeAncova.pdf', height=5.25,width=6.75)
par(mar = c(5, 5, 3, 1)) # set margin settings.
with(subset(RyeMeans, YrPd == "2008 P1"), plot(Term.DOY, MeanDM,
 ylim = c(100, 1100), xlim = range(RyeMeans$Term.DOY),
 ylab = expression(paste("Rye biomass (g ", m^{
 -2
 }, ")")), xlab = "Date", type = "n", xaxt = "n")) # subset
not necessary here
for dates on X axis, use this, and add xaxt='n' to
above call to plot()
axis(side = 1, at = seq(120, 160, by = 10), labels = c("May 1",
 "May 11", "May 21", "May 31", "June 10"))
add error bars for termination date (Term.DOY) in
each treatment group (YrPd).
```

```
for (i in 1:4) {
 with(subset(RyeMeans, as.numeric(YrPd) == i),
 arrows(Term.DOY,
 MeanDM + DMse, Term.DOY, MeanDM - DMse, length = 0.05,
 angle = 90, code = 3, lwd = c(1, 2, 1, 2)[i], col =
 c("black",
 "black", "grey57", "grey57")[i]))
} #using this loops avoids 4 identical calls to arrows()
legend("bottomright", inset = 0.015, legend = c("Sept. 2008",
 "Oct. 2008", "Sept. 2009", "Oct. 2009"), lwd = c(1, 2,
 1, 2), col = c("black", "black", "grey57", "grey57"),
 lty = c(1, 1, 2, 2), title = "Rye planting date")
ADD lines
endpoints <- data.frame(YrPd = rep(c("2008 P1", "2008 P2",
 "2009 P1", "2009 P2"), each = 2), Term.DOY = c(117, 155,
 117, 155, 118, 160, 118, 160))
create df of x value endpoints for lines
endpoints <- cbind(endpoints, RyeDM = predict(lm(MeanDM ~
 Term.DOY + YrPd, data = RyeMeans), newdata = endpoints))
create df of }x\mathrm{ and y value for line endpoints
endpoints <- cbind(endpoints[c(1, 3, 5, 7),], endpoints[c(2,
 4, 6, 8), -1])
reorganize this so each row is coordinates for one
line
segments(x0 = endpoints[, 2], y0 = endpoints[, 3], x1 =
endpoints[,
 4], y1 = endpoints[, 5], col = c("black", "black", "grey57",
 "grey57"), lwd = c(1, 2, 1, 2), lty = c(1, 1, 2, 2))
draw the lines ADD ANOVA table
legend(121, 1137, legend = c("Effect", "Slope(Date)", "Cereal rye
@ planting date",
 "Year", expression(R^2)), bty = "n", adj = 0.5, cex = 0.9)
adj=0.5:centered text
legend(130.5, 1137, legend = c("p-value", "0.0001", "0.0138",
 "0.0001", "0.84"), bty = "n", adj = 0.5, cex = 0.9)
rect(116, 835, 135.5, 1110)
lines(x = c(116.5, 135), y = c(1060, 1060), lwd = 2)
```


\#\# dev.off()

There is an informative plot that shows the variability in the $y$-axis for each group at each point in the x-axis. While you never may need to make a plot like this, some elements of this are likely to be useful - for example a regression line that doesn't extend beyond the x-axis range of the data would be generally useful.

Things to notice: 1. the use of type="n" to create a blank plot - even though nothing has been plotted, the coordinate space has been created, so points(), lines(), and arrows () can be used.
2. The use of a for () loop to draw the errorbars avoids 4 nearly identical calls to arrows(). 3. To draw the lines of the ANCOVA model so that they don't extend beyond the data, we can't use abline() (in any case, it would not gracefully deal with a complex model like this). We need to use predict() with our model, which means we need a data.frame of that includes the terms of the model. It is worth viewing the object endpoints when it is created and each of the times it is modified.
4. The modified form of endpoints simplifies using segments () to draw 4 lines at once. 5. "grey57" means a grey that is $57 \%$ white, so "grey90" is a light grey and "grey10" a dark grey.
6. Adding the ANCOVA table to the plot with legend() required a bit of trial
en error to get the spacing right. The function addtable2plot() in the package "plotrix" might make this easier. ${ }^{1}$
7. There are two lines commented out with \#\#\#: pdf(...) and dev.off(). If they were run they would open a pdf graphic device ( $\operatorname{pdf}()$ ) of specified size and close that device (dev.off()), and all code between them would be sent to that device. Rather than create a plot you can view while making it, they would create a .pdf file. RStudio has nice tools for exporting plots, but is is good to know how to write directly to pdf, in case you need to script making multiple plots (or you are not using RStudio)

### 16.3 Scatter Plots with Confidence Ribbons

One of the wonderful things about R graphics is how anything is possible. Here we'll make a scatter plot of some data and visualize the confidence interval for around that data with a ribbon, which we'll make using polygon() for drawing arbitrary polygons. This example is a plot showing the effect of limestone gravel on the pH of acidic forest soils in PA. Soil was sampled at varying distances (dist) from the $\operatorname{road}^{2}$ on several forest roads in PA, which were surfaced either with shale or limestone gravel.

```
pHmeans <- read.table("../Data/ph data.txt", header = TRUE,
 sep = "\t", stringsAsFactors = TRUE)
pHmeans <- pHmeans[pHmeans$side == "down", -3] # simplify the
data
head(pHmeans)
```

The data table here includes mean, standard deviation, standard error, and the $95 \%$ confidence interval for the mean. First we'll make a basic version of the plot. As above you'll want to set height of the graphics device to 5 inches and the width to 4 .

```
xl <- range(pHmeans$dist) # x limits
par(mar = c(4.1, 4.1, 1, 1)) # set par()
with(subset(pHmeans, trt == "L"), plot(dist, mean, xlab =
@ "Distance (m)",
 ylab = "", type = "l", ylim = range(pHmeans$mean), frame =
 FALSE,
 las = 1)) # plot
with(subset(pHmeans, trt == "S"), lines(dist, mean, lty = 2))
```

[^43]

Some things to notice: 1. The argument las= forces axis tick labels to be horizontal. 2. the frame=FALSE argument suppresses the "box" around the plot.

In order to show the variability around the mean we'll use the function polygon(), which creates arbitrary polygons bounded by a series of points of given $\mathrm{x}=$ and $\mathrm{y}=$ coordinates, as shown here.

```
plot(1:40, (1:40)/5, type = "n")
polygon(x = c(20, 25, 30, 30, 20), y = c(5, 6, 6.2, 4, 5))
x <- c(5, 10, 15, 20)
y<- c(4, 4.5, 4.2, 5)
polygon(x = c(x, rev(x)), y = c(y, rev(y + 1.5)), col = "grey")
```



The second call to polygon() shows how we can create a "ribbon" using c() and rev() (which reverses its argument). We'll use the same approach to calculate the ribbons for the limestone and shale roads on the up-slope and down-slope sides of the road. We'll start by calculating the $y$ - and $x$ - values for the polygons.

```
L <- with(subset(pHmeans, trt == "L"), c(mean + sterr * qt(p =
@ 0.975,
 df = count - 1), rev(mean - sterr * qt(p = 0.975, df = count
 @ -
 1))))
pH for limestone
S <- with(subset(pHmeans, trt == "S"), c(mean + sterr * qt(p =
40.975,
 df = count - 1), rev(mean - sterr * qt(p = 0.975, df = count
 \hookrightarrow
 1))))
pH for shale
dds <- with(subset(pHmeans, trt == "S"), c(dist, rev(dist)))
distances for limestone
ddl <- with(subset(pHmeans, trt == "L"), c(dist, rev(dist)))
distances for shale
```

Notice that we're using subset () to select the relevant part of the data, and then using $c()$ and $r e v()$ to put together the top and the bottom $y$ values (lines 2-5) and to create the $x$ values (last 2 lines). In my head "L" stands for limestone and "S" for shale, and "dds" for distances for shale. The call to qt()
here is returning the appropriate $t$-value for a $95 \%$ confidence interval given the degrees of freedom.

```
lime = rgb(t(col2rgb("grey44")), alpha = 128, max = 255)
lime='#70707080'
shal = rgb(t(col2rgb("darkolivegreen2")), alpha = 128, max = 255)
'#BCEE6880'
xl <- range(pHmeans$dist)
op <- par(mar = c(4.1, 4.1, 1, 1))
with(subset(pHmeans, trt == "L"), plot(dist, mean, xlab = "",
 ylab = "", type = "n", ylim = c(3.5, 8.25), xlim = xl,
 las = 1, frame = FALSE))
polygon(ddl, L, col = lime, border = NA)
polygon(dds, S, col = shal, border = NA)
with(subset(pHmeans, trt == "L"), lines(dist, mean, xlab = "",
 lty = 1, lwd = 2))
with(subset(pHmeans, trt == "S"), lines(dist, mean, xlab = "",
 lty = 1, lwd = 2))
legend("topright", inset = 0.1, fill = c(rgb(r = 0.5, g = 0.5,
 b = 0.5, alpha = 0.5), rgb(r=0.73, g = 0.93, b = 0.41,
 alpha = 0.7)), legend = c("Limestone", "Shale"), cex = 1.2)
mtext(text = "Soil pH", side = 2, cex = 1.2, line = 2.2)
mtext(text = "Distance from road (m)", side = 1, line = 2,
 cex = 1.2)
```



Things to notice here: 1 . We want semi-transparent colors in case our ribbons
overlap. We use col2rgb() to get the rgb colors that correspond to the R colors, and rgb() to specify colors with transparency (alpha<255, with max=255).
2. Since col2rgb returns rows and $r g b()$ requires columns, $t()$ transposes the rows of col2rgb() to columns.
3. col2rgb returns values from $0-255$, so we tell rgb () that $\max =255$ - the default for rgb() is a $0-1$ scale.
4. We created the polygons first and plotted the lines on top.

The package ggplot2 has tools for automatically adding ribbons, but now you know how to manipulate arbitrary polygons.

### 16.4 Error Bars in 2 Dimensions

Sometimes we might want to show errorbars in two dimensions. This is not particularly difficult, it just uses more of what we learned last chapter. We'll demonstrate with the mtcars data, and look at horsepower (hp) and displacement (disp) for cars with differing number of cylinders (cyl).

```
data(mtcars)
cols = c("black", "red", "blue")
with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))
```



As a quick check we can plot the data and see we have three clusters. How different are they - are their means "significantly different"? First we'll calculate means and standard errors for each group (see Chapter 9).

```
car.means <- with(mtcars, aggregate(cbind(disp, hp), by =
-> list(cyl = cyl),
 mean))
car.means[, 4:5] <- with(mtcars, aggregate(cbind(disp, hp),
 by = list(cyl), function(x) qt(0.025, df = length(x),
 lower.tail = FALSE) * sd(x)/sqrt(length(x)))) [2:3]
names(car.means)[4:5] <- c("disp.CI", "hp.CI")
```

Note that here we've actually (correctly) queried the $t$-distribution for calculating our $95 \%$ CI, rather than just using a value of 1.96 from the $Z$ distribution. Now we can plot this data and add errorbars. For interest, let's plot it on top of our previous plot.

```
with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))
with(car.means, points(disp, hp, pch = 24, bg = cols[cyl/2 -
 1]))
with(car.means, arrows(disp, hp - hp.CI, disp, hp + hp.CI,
 code = 3, length = 0.1, angle = 90, col = cols[cyl/2 -
 1]))
y-axis error bars
with(car.means, arrows(disp - disp.CI, hp, disp + disp.CI,
 hp, code = 3, length = 0.1, angle = 90, col = cols[cyl/2 -
 1]))
```



```
x-axis error bars
```

An alternate way to show the errorbars in 2 dimensions is using an ellipse. The package plotrix has a function for plotting ellipses that we can use. You'll need to run install.packages("plotrix") if you haven't already done so.

```
library(plotrix)
with(mtcars, plot(disp, hp, col = cols[cyl/2 - 1]))
with(car.means, points(disp, hp, pch = 24, bg = cols[cyl/2 -
 1]))
with(car.means, draw.ellipse(x = disp, y = hp, a = disp.CI,
 b = hp.CI, border = cols, lwd = 1))
```



There are other ways to do draw an ellipse, such as directly coding an ellipse.
It is important to recall that the ellipses or error bars in these last figures are for the means. We don't expect that new samples drawn from these populations will fall within these bounds - in fact, few of our individual samples fall within them. (See discussion of confidence vs prediction intervals in @ref(\#predictions))

### 16.5 Reversing Axes

On occasion it make sense to reverse an axis for some reason - maybe to plot something that varies with depth (dissolved oxygen in ocean water [for
example] (http://www.oceannetworks.ca/sites/default/files/images/pages/ data/Saanich_oxygen_profile.gif)). We'll produce a (crude) facsimile of this figure to demonstrate how to approach this. We'll begin by making up some data.

```
depth <- seq(0, 200, 20)
DO <- c(5, 2.5, 2, 1.5, 0.5, 0.4, 0.3, 0.1, 0.1, 0.1, 0.5)
plot(DO, depth, type = "l")
plot(DO, -depth, type = "l")
```



A simple call to plot is fine for basic visualization, but it is "upside down", rather than what we really want to see. Even plotting the negative of depth only gets us partway to our goal - the axis labels on the y axis should be positive, and the x -axis should be on top.

```
par(mar = c(1, 5, 4, 1), tck = 0.02) # set margins
plot(DO, depth, type = "l", xaxt = "n", xlab = "", ylab = "Depth
@ (m)",
 ylim = c(200, 0), las = 1)
axis(side = 3)
mtext(side = 3, line = 2.5, "Dissolved Oxygen (mg/l)")
```



Note that here we also reversed the default outside placement of tick marks using the argument tck=0.02 - this is just to demonstrate that you can change pretty much anything in your plots. The value 0.02 is fraction of the plot width. We also placed the tick mark labels horizontally using the argument las=1.Also note that mtext() can take vectors as inputs (hardly surprising since this is $R$ ). One would use the same approach we used here for reversing the $y$-axis to reverse the x -axis.

### 16.6 Summary

In this chapter we've looked at several scatterplots and at how lines, error bars, and polygons can be added to plots. We've also learned how to create semitransparent colors. These are pretty basic tools which can be applied to a wide range of graphics. In the next chapter we'll continue with visualizing data. We've also looked at how we can create multi-panel figures.

### 16.7 Fun with R graphics

I created this at one point to see what kind of "art" (or perhaps I should say "aRt"?) I could generate in $R$ with random rectangles and random (semitransparent) fill. It mostly uses things we've looked at in this lesson. Here I've defined it as a function because that makes it easier to run it repeatedly until I like the output. We'll look more at writing functions later. (I make no claim that this is useful, or even art, but it amused me and I learned some things).

```
random.color.boxes = function(n = 10) {
 cols <- colors()[c(1, 26, 552, 652, 454)]
 cols <- col2rgb(cols) # to find out the rgb code for a color
 als <- c(rep(0, 5), rep(10, 5), seq(0, 220, 20))
 # rgb(red,green,blue, alpha,max) # to specify color
 par(mar = c(1, 1, 1, 1))
 plot(0:10, 0:10, type = "n", xaxt = "n", yaxt = "n", xlab =
 @ "",
 ylab = "")
 cs <- sample(1:5, n, rep = T)
 as <- sample(als, n, rep = T)
 a <- runif(n) * 10
 b <- runif(n) * 10
 c <- runif(n) * 10
 d <- runif(n) * 10
 rect(a, b, c, d, border = "black", col = rgb(cols[1, cs],
 cols[2, cs], cols[3, cs], as, max = 255))
 rect(a, b, c, d, border = "black") # replot borders
}
random.color.boxes()
```



### 16.8 Exercises

1) In Chapter 12 we fit a simpler model (only the average temperature and the quadratic term, no factor for insulation). Use polygon() to plot the confidence interval for this model and then plot the points over it. Hint Use predict() to generate the confidence interval.
2) The "ufc" data we examined in last chapter's exercises can be loaded from ufc.csv (in the "data" directory of EssentialR). This contains data on forest trees, including Species, diameter (in cm, measured 4.5 feet above ground and known as "diameter at breast height" or Dbh), and height (in decimeters). Make a scatterplot showing average Height as a function of average Dbh for each species. Include $x$ and $y$ errorbars on the plot showing the standard errors.

## Chapter 17

## Visualizing Data III

## Boxplots and barplots

### 17.1 Introduction

In the chapters we've covered basic scatter plotting, and then looked at how we can use several graphical functions to control spacing of margins around plots, multiple panels in a figure, and the addition of error bars, and polygons on the plot and in the margins. Here we'll build on what we learned last time and apply it to boxplots and barplots.

### 17.2 Boxplots

Boxplots are very useful tools for visualizing and comparing distributions. We'll use boxplots to explore some data on the growth of beans in nine different treatments (combinations of soil fertility, pot size, and presence/absence of competitors) ${ }^{1}$

```
beans <- read.csv("../Data/BeansData.csv", header = TRUE,
 comm = "#", stringsAsFactors = TRUE)
get data
names(beans)
```

```
[1] "pot.size" "phos" "P.lev" "rep"
[5] "trt" "rt.len" "ShtDM" "RtDM"
```

[^44]```
par(mar = c(3.5, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans) # make plot
```


Note that we are coercing the variable trt to a factor here. If we don't do this, plot() does not know how to handle it, because it is a character variable.

This is a pretty basic plot. Let's fix it up with treatment labels and a legend:

```
par(mar = c(4.1, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",
-> "grey60"),
    ylab = "Shoot biomass (g)", xlab = "", xaxt = "n")
abline(v = c(2.5, 4.5), lty = 2)
axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),
    tick = FALSE, cex.axis = 1.3)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",
    "grey60"), bg = "white")
mtext("Pot volume", side = 1, line = 2.5, cex = 1.2)
```


Most of the 'tricks' we used here were introduced in the last chapter. Things to notice here: 1. The vector of colors for filling the boxes is only 3 elements long - it is recycled over the 9 boxes. 2. abline() can be used to draw vertical ($\mathrm{v}=\ldots$.) or horizontal lines - useful for gridlines or separating lines. 3. Using axis() with tick=FALSE allows us to put labels on the x axis wherever we want.

Here is an alternate (basic) form of the graph where we use the at= argument in boxplot() to group the boxes. The other elements (axis labels, legend) haven't been included here, but can be added, though the spacing of added elements may need to be adjusted.

```
par(mar = c(3.5, 4.1, 0.6,0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",
    -> "grey60"),
    ylab = "Shoot biomass (g)", xlab = "", xaxt = "n", at =
    c(1.15,
        2, 4.15, 5, 7.15, 8))
```


17.2.1 Adding means to boxplots

Barplots (see below) are often used instead of boxplots, but barplots generally only show mean and variation. There are a number of very good reasons to prefer boxplots with added means over barplots. Here we'll demonstrate how to construct such a plot.

The first step is to extract means and standard errors from the data set. This should ring a bell - we used apply() functions and aggregate() for this in Chapter 9. Here is an example of defining a function "on the fly" to calculate the SE by treatment. It calculates the number of values by counting the number of values that are not NA (sum(is.na(x) ==FALSE)). In a perfect world, we don't have to worry about missing data, but real data is rarely that nice.

```
beans2 <- with(beans, aggregate(cbind(rt.len, ShtDM, RtDM),
    by = list(phos = phos, pot.size = pot.size), FUN = mean,
    na.rm = TRUE)) # get means
beans2 <- cbind(beans2, with(beans, aggregate(cbind(rt.len,
    ShtDM, RtDM), by = list(phos = phos, pot.size = pot.size),
    function(x) (sd(x, na.rm = TRUE)/(sum(is.na(x) ==
    @ FALSE)^0.5))))[,
    3:5]) # add sd
names(beans2)[6:8] <- c("rt.lense", "ShtDMse", "RtDMse")
beans2$type <- letters[1:6] # create the trt type variable
beans2 # check
```

Now that we have the means and standard errors for the groups we can add them to the boxplot we just made.

```
par(mar = c(4.1, 4.1, 0.6, 0.6))
plot(ShtDM ~ factor(trt), data = beans, col = c("white",
\hookrightarrow "grey60"),
    ylab = "Shoot biomass (g)", xlab = "", xaxt = "n")
arrows(1:6, beans2$ShtDM - beans2$ShtDMse, 1:6, beans2$ShtDM +
    beans2$ShtDMse, code = 3, angle = 90, length = 0.1, lwd = 2)
points(1:6, beans2$ShtDM, pch = 23, cex = 1.5, lwd = 2, bg =
c("white",
    "grey60"))
abline(v = c(2.5, 4.5), lty = 2)
axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),
    tick = FALSE, cex.axis = 1.3)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",
    "grey60"), bg = "white", ncol = 2)
mtext("Pot volume", side = 1, line = 2.5, cex = 1.2)
```


This is a graphic that clearly shows the distribution of the variables. The choice of how to indicate the means and standard errors has some room for variation. Here we've used a solid fill so the median line is obscured where overplotted by the mean - this is one way to ensure that it is clearly visible even if the mean happens to coincide with the median.

17.2.2 A Multi-panel Boxplot

Let's adapt this code to make a multi-panel boxplot. As we discussed in the last session, you may want to force a plotting window of specific size using: quartz(title= "Density Dependence", height=6,width=4)
or x 11 (title="Density Dependence", height=6, width=4) to create the appropriately sized plotting window.

```
## quartz(width = 5, height = 7)
layout(matrix(c(1, 2, 3), nrow = 3), heights = c(1, 1, 1.3))
# layout.show(3) # to check the layout
par(mar = c(0, 5, 1, 1), cex.axis = 1.3, cex.lab = 1.3)
## shoot biomass
with(beans, plot(trt, ShtDM, col = c("white", "grey60"), ylab =
@ "Shoot biomass (g)",
    xlab = "", xaxt = "n", cex = 1.3))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "A", cex = 2, bty =
@ "n")
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",
    "grey60"), bg = "white", ncol = 2)
par(mar = c(0, 5, 0, 1))
## root biomass
with(beans, plot(trt, RtDM, col = c("white", "grey60"), ylab =
-> "Root biomass (g)",
    xlab = "", xaxt = "n", cex = 1.2, ylim = c(0, 1.9)))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "B", cex = 2, bty =
@ "n")
par(mar = c(5, 5, 0, 1))
## root length
with(beans, plot(trt, rt.len, col = c("white", "grey60"),
    ylab = "Root length (m)", xlab = "", xaxt = "n", cex = 1.2))
abline(v = c(2.5, 4.5), lty = 2)
legend("topleft", inset = c(-0.05, -0.05), "C", cex = 2, bty =
@ "n")
axis(side = 1, at = c(1.5, 3.5, 5.5), labels = c(4, 8, 12),
    tick = FALSE, cex.axis = 1.3)
mtext("Pot volume (L)", side = 1, line = 2.65)
```


Notice the use of legend () instead of text () to place the panel labels (A-C). Since a location like "topleft" can be specified and the inset= specified (in fraction of the plot) this is an easier way to get these labels in the same location on all panels.

17.3 Barplots

Now we're ready to make barplots (though as noted above, you should probably ask yourself if a boxplot would be a better choice). We've used barplot() in a few examples previously, but we'll dig in more here. NOTE: barplot() does not accept data in a formula ($\mathrm{y} \sim \mathrm{x}$) like plot() or boxplot(). It also requires that the argument height=, which specifies the height of the bars, be a vector or a matrix. We'll use arrows () to make error bars as we did previously. We already calculated the means and standard errors for this data for overplotting means on boxplots.

```
with(beans2, barplot(ShtDM, ylim = c(0, max(ShtDM + ShtDMse))))
with(beans2, arrows(0.5:5.5, ShtDM + ShtDMse, 0.5:5.5, ShtDM -
    ShtDMse, length = 0.05, angle = 90, code = 3))
```

The basic barplot (below left) is OK, but the error bars ended up in strange locations. In the previous example with boxplot() the boxes were centered on the integer values on the x -axis - we used this in placing our separating lines and x -axis labels. Here something else is going on.

A closer reading of ? barplot yields this useful information: in addition to making a barplot, barplot() also invisibly returns the midpoints of the bars. All we need to do is assign this output from barplot and we can use it (below right).

```
mp <- with(beans2, barplot(ShtDM, width = 0.8, ylim = c(0,
    max(ShtDM + ShtDMse))))
mp # retreive the bar midpoints
```

\# [,1]
\# [1,] 0.56
\# [2,] 1.52
\# [3,] 2.48
\# [4,] 3.44
\# [5,] 4.40
\# [6,] 5.36

A look at the bar midpoints confirms that they are not centered on integer values. Can bar position be specified? Of course! A careful reading of ?barplot is instructive: the argument that controls bar width is width= and it's default value is 1 . The spacing is controlled by space=, which defaults to 0.2 (where bars are not grouped); space $=$ is specified in fractions of width=. Both space= and width= can be specified as vectors for the ability to control bar placement.

17.3.1 Creating a Polished Barplot

Putting all of this together we can make a high-quality barplot.

```
par(mar = c(4.1, 4.1, 0.6, 0.6))
mp <- with(beans2, barplot(ShtDM, col = c("white", "grey60"),
    width = 0.8, ylim = c(0, max(ShtDM + ShtDMse) * 1.1),
    ylab = "Shoot biomass (g)", xlab = "", xaxt = "n"))
# make the plot
box(which = "plot") # put a box around it
with(beans2, arrows(mp, ShtDM + ShtDMse, mp, ShtDM - ShtDMse,
    length = 0.05, angle = 90, code = 3))
# add error bars
abline(v = c(mean(mp[2:3]), mean(mp[4:5])), lty = 2)
# add dashed separator lines
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",
    "grey60"), bg = "white", cex = 0.9) # legend
axis(side = 1, at = mp[c(1.5, 3.5, 5.5)], labels = c(4, 8,
    12), tick = FALSE, cex.axis = 1.3)
#
@ axis(side=1,at=c(1,3,5),labels=c(4,8,12),tick=FALSE, cex.axis=1.3)
mtext("Pot volume (L)", side = 1, line = 2.65)
```


Notice that we didn't have to hard-code legend or label locations: legend() can take "topright" as a location and we can specify inset= also. The x-axis labels and vertical separators are based on the vector of bar midpoints also. This is generally the best approach: 1) if you change the size of the plotting window or the character size in the legend, things will still end up in the right location 2) since it makes your code more general, it is easier to adapt for the next plot you have to make.

17.3.2 Creating a Multi-panel Barplot

Now we'll put it all together for multiple panels, and include significance letters such as might be given by a Tukey test (not shown here). (As above, height and width want to be forced to 6 " and $4 "$).

```
## quartz(width = 5, height = 7)
layout(matrix(c(1, 2, 3), nrow = 3), heights = c(1, 1, 1.3))
# make layout
par(mar = c(0, 5.5, 1, 1), cex.axis = 1.3, cex.lab = 1.3,
    las = 1)
# par settings plot 1
mp <- with(beans2, barplot(ShtDM, col = c("white", "grey60"),
    xlab = "", xaxt = "n", ylim = c(0, max(ShtDM + ShtDMse) *
        1.14), ylab = "Shoot biomass (g)"))
box(which = "plot")
with(beans2, arrows(mp, ShtDM + ShtDMse, mp, ShtDM - ShtDMse,
    length = 0.05, angle = 90, code = 3)) # err bars
divs <- c(mean(mp[2:3]), mean(mp[4:5])) # calculate divider
\rightarrow ~ l o c a t i o n s
abline(v = divs, lty = 2)
text(mp, (beans2$ShtDM + beans2$ShtDMse), c("a", "b", "a",
```

```
    "b", "a", "b"), pos = 3, cex = 1.15) # add letters
legend("topleft", inset = c(-0.05, -0.05), "A", cex = 2, bty =
@ "n")
## plot 2
par(mar = c(0, 5.5, 0, 1))
with(beans2, barplot(RtDM, col = c("white", "grey60"), xlab = "",
    xaxt = "n", ylim = c(0, max(RtDM + RtDMse) * 1.14), ylab =
    @ "Root biomass (g)"))
box(which = "plot")
with(beans2, arrows(mp, RtDM + RtDMse, mp, RtDM - RtDMse,
    length = 0.05, angle = 90, code = 3)) # err bars
abline(v = divs, lty = 2)
text(mp, (beans2$RtDM + beans2$RtDMse), c("ab", "b", "a",
    "b", "ab", "b"), pos = 3, cex = 1.15) # add letters
legend("topleft", inset = c(-0.05, -0.05), "B", cex = 2, bty =
@ "n")
## plot 3
par(mar = c(5, 5.5, 0, 1))
with(beans2, barplot(rt.len, col = c("white", "grey60"), xlab =
@ "",
    xaxt = "n", ylim = c(0, max(rt.len + rt.lense) * 1.4),
    ylab = "Root length (m)")) # plot 3
box(which = "plot")
with(beans2, arrows(mp, rt.len + rt.lense, mp, rt.len - rt.lense,
    length = 0.05, angle = 90, code = 3)) # err bars
abline(v = divs, lty = 2)
text(mp, (beans2$rt.len + beans2$rt.lense), c("b", "c", "a",
    "c", "ab", "b"), pos = 3, cex = 1.15) # add letters
legend("topleft", inset = c(-0.05, -0.05), "C", cex = 2, bty =
@n")
axis(side = 1, at = mp[c(1.5, 3.5, 5.5)], labels = c(4, 8,
    12), tick = FALSE, cex.axis = 1.3)
mtext("Pot volume (L)", side = 1, line = 2.65)
legend("topright", inset = 0.02, legend = c("LP", "HP"), fill =
c("white",
    "grey60"), bg = "white", cex = 0.9)
```


Notice that locations of the added elements mostly are not hard-coded. They $\mathrm{y}=$ location for the panel labels is calculated the same way as the upper ylim= value.

17.4 Summary

The last three chapters have introduced most of the tools required for presenting data in graphical form. One of the great challenges is figuring out what the clearest and most informative way to present a given set of data is. As noted above, barplots are commonly used when they probably should not be used. When thinking about presenting data, it may be useful to review the work of Cleveland and McGill, as this helps us think about how to clearly present data.

17.5 Exercises

1) The "ufc" data we examined in last chapter's exercises can be loaded from ufc.csv (in the "data" directory of EssentialR). This contains data on forest trees, including Species, diameter (in cm, measured 4.5 feet above ground and known as "diameter at breast height" or Dbh), and height (in decimeters). Make a single barplot showing both variables (Dbh and Height) for each Species and include errorbars (either SE of the mean or 95% CI) and a legend. Hint: In Ch 15 we saw how to add a secondary y-axis - with a barplot you need to specify the x-axis limits and change the width= and space= arguments to make the bars narrower and to get the bars to plot side-by-side.
2) Using the ufc data create a single plot shows a boxplot, with mean and standard error for both variables for the 5 most common (greatest frequency) species (a total of 10 boxplots). Hints: create a new dataframe with only the 5 most common species - and be sure to check the levels for Species in the new dataframe - you may need to use droplevels() to get rid of unused levels. Recall you can use \%in\% for logical test of group membership. For putting multiple variables on a single box-plot, have a look at ?boxplot - particularly at $=$ and add $=$.

Chapter 18

Mixed Effects Models

More advanced documentation and managing projects

18.1 Introduction

I will begin by saying that this should be considered a minimal introduction to mixed effects models, and the goal here is point you toward a few functions and packages likely to be useful. There are many, many possible applications of mixed models, and I am not an expert. Having said that, I will share what I have learned.

The regression assumptions we examined so far (Chapters 6 and 11) deal with normality of the residuals and constant variance in the residuals. There is another assumption - namely that the residuals are independant ${ }^{1}$.

In many cases this assumption causes difficulties in analysis. For example in a drug metabolism trial a group of subjects may be given a fixed dose of medication and the persistence of the medication, or its metabolites (breakdown products) in the blood measured over some length of time. We can imagine that concentration of a metabolite in blood might be related to time, but there may be individual differences between subjects. Furthermore, the levels from one subject are likely to be correlated with each other, because they are generated by the same organism.

Another possible example might be measuring the changes in student scores on a math test in response to one of three different curricula, with each curriculum presented by one of four different teachers. We might expect that each of the

[^45]12 teachers (four per curriculum x 3 curricula) would present the curriculum in a slightly different way, so there might be a lack of independence between residuals within a classroom. We can't really include teacher as a fixed effect here, becuase each teacher only teaches one curriculum. But we can treat teacher as a random effect.

We might be able to control for the within subject variation by adding a term for subject in the model, but this has a major drawback: we have to use a lot of degrees of freedom estimating coefficients for each subject, and this reduces our error degrees of freedom, which reduces our ability to detect the thing we are really interested in (in this case the persistence of the medication).

In linear models we are using a model like $y=B_{0}+B_{1} x+\varepsilon$ to model the effect of x on y. We refer to the parameters we estimate here as fixed effects. In the mixed effects model we partition the error portion of the model (ε) into random effects and error. The random effect are used to account for the variability between subjects. This allows our model to account for this source of variation without using degrees of freedom to estimate the coefficients (parameters) for each.

This is analogous to the split-plot design we discussed in Chapter 13. Instead of correlation (dependency) between measurements coming from a single subject, here we expect some correlation of residuals from subplots within a larger plot (main plot or whole plot) - correlation driven by spatial proximity.

How do you know if an effect is fixed or random? Part of the answer lies in what you want to estimate. In the drug trial example above our goal is to understand the way the drug works for a whole population, from which we have drawn a (hopefully!) representative sample. So we would consider the subjects as random, but the drug treatments or time after treatment to be fixed. Another way to ask the question might be "If someone else repeated my experiment what would be the same and what would be different?" In the example above the drug and time after treatment variables could be exactly repeated, but the subject would not. This suggests that subjects is a random effect. ${ }^{2}$

18.2 A basic example

Let's begin with an example. We'll load the package nlme (Non Linear Mixed Effects) - if you haven't done so you will need to install it (install.packages("nlme")). We'll then load the dataset Machines and inspect it.

[^46]```
library(nlme)
data(Machines)
6 randomly selected workers tested on 3 types of
machine
summary(Machines)
```

| \# | Worker Machine | score |  |
| :--- | :--- | :--- | :--- |
| \# | $6: 9$ | A:18 | Min. $: 43.00$ |
| \# | $2: 9$ | B:18 | 1st Qu. $: 52.42$ |
| \# | $4: 9$ | C:18 | Median $: 61.60$ |
| \# | $1: 9$ |  | Mean $: 59.65$ |
| \# | $3: 9$ |  | 3rd Qu. $: 65.30$ |
| \# | $5: 9$ |  | Max. $: 72.10$ |

This dataset comes from a trial of three brands of machines used in an industrial process. Six workers in the factory were selected at random and each operated each machine three times. The response variable is "score" which is a productivity score - for more information use ? Machines (Note: this will not work if nlme has not been loaded). If our primary goal is to ask "Which machine maximizes productivity?" we might start this way:

```
fm1 <- lm(score ~ Machine, data = Machines)
anova(fm1)
Analysis of Variance Table
#
Response: score
Df Sum Sq Mean Sq F value Pr(>F)
Machine 2 1755.3 877.63 26.302 1.415e-08 ***
Residuals 51 1701.7 33.37

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(fm1)
```

\#
\# Call:
\# lm(formula = score $\sim$ Machine, data = Machines)
\#
\# Residuals:
\# Min 1Q Median $\quad$ 3Q $\quad$ Max

```
-17.3222 -2.1431 0.4444 4.4403 9.3778
#
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 52.356 1.362 38.454 < 2e-16 ***
MachineB 7.967 1.925 4.138 0.000131 ***
MachineC 13.917 1.925 7.228 2.38e-09 ***

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 5.776 on 51 degrees of freedom
Multiple R-squared: 0.5077, Adjusted R-squared: 0.4884
F-statistic: 26.3 on 2 and 51 DF, p-value: 1.415e-08
```

We can see that we have a significant difference associated with brand of machine ( $p$ much less than 0.0001 ), and it appears that all three machines are likely different from each other in their productivity. However an examination of the residuals reveals trouble - evidence of both departure from normality and unequal variance.

```
plot(fm1, which = 1:2) # but residuals look a bit strange
```



A bit of reflection might convince us that different workers might also have different levels of productivity (score). A quick oneway.test () confirms this.

```
oneway.test(score ~ Worker, data = Machines)
#
One-way analysis of means (not assuming equal
variances)
#
data: score and Worker
F = 4.866, num df = 5.000, denom df = 22.149,
p-value = 0.003747
```

The fourth panel of the above figure also suggests that machines may affect productivity differently for different workers, which suggests an interaction. In principle we could use Tukey $\operatorname{HSD}()$ here to describe teh subtleties of the worker* machine interaction, but these results would be specific to the 6 workers selected here - remember, what we really want to know (the differences we really want to be able to detect) are differences between machines.

```
fm2 <- lm(score ~ Machine * Worker, data = Machines)
anova(fm2)
```

```
Analysis of Variance Table
#
Response: score
Df Sum Sq Mean Sq F value Pr(>F)
Machine 2 1755.26 877.63 949.17< 2.2e-16 ***
Worker 5 1241.89 248.38 268.63< 2.2e-16 ***
Machine:Worker 10 426.53 42.65 46.13 < 2.2e-16 ***
Residuals 36 33.29 0.92

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

op <- par(mfrow $=c(1,2))$
plot(fm2, which = 1:2)

par(op)
par(op)

The ANOVA above shows that when we account for the dependence of machine productivity on worker both machine and worker differences are very significant. However the model (coefficients given by summary (fm2)) is difficult to interpret - the interaction means that different workers get different results from the machines. What we really want to know is how the machines would work for the average worker. To work toward this we'll use the function lme() from nlme.

```
fm3 <- lme(score ~ Machine, random = ~1 | Worker, data =
M Machines)
```

Here we've created a mixed effects model (an "lme object") with a random intercept for each worker. We can query this object with various methods, which will be rather familiar. A quick review of summary (fm3) (not shown here) shows estimates for our Fixed effects - the three levels of Machine, and an estimate of the variation associated with workers.

```
anova(fm3) # larger F-value than with lm()
plot(fm3) # residuals still odd
```



```
summary(fm3)
```

```
Linear mixed-effects model fit by REML
Data: Machines
#
Random effects:
Formula: ~1 | Worker
(Intercept) Residual
StdDev: 5.146552 3.161647
#
Fixed effects: score ~ Machine
Correlation:
(Intr) MachnB
MachineB -0.236
MachineC -0.236 0.500
#
Standardized Within-Group Residuals:
\# Min Q1 Med Q3 Max
-2.7248806 -0.5232891 0.1327564 0.6513056 1.7559058
#
Number of Observations: 54
Number of Groups: 6
```

This is the main benefit of mixed effects models - here we are using the variation among 6 workers to estimate the general variability associated with workers, as opposed to trying to estimate the fixed effects for 6 specific workers. Note
that the standard deviation of the intercept for Worker is still similar in size to inter-machine differences.

Note that the output from anova() is a bit different - we have an $F$ test for the intercept as well as for the effect Machine. Note that the $F$-value for Machine is much greater here than in the first model that we fit with $\operatorname{lm}()$ - accounting for worker differences shrinks the residual variance and makes our $F$ test more sensitive.

However the residuals suggest that we have some trouble - we seem to have more negative residuals for intermediate fitted values. This may not be a surprise, we have not accounted for differences between workers in how machines affect productivity.

We can fit a model with both random intercept and random effect of machine for each worker. Let's check the residuals first.

```
fm4 <- lme(score ~ Machine, random = ~1 + Machine | Worker,
 data = Machines)
plot(fm4)
```


qqnorm $(f m 4$, abline $=c(0,1))$


```
par(op)
```

The residuals are behaving a bit better here, and look rather similar to those of our second model. The qqplot shows they are sufficiently near normal.

```
anova(fm4) # F value lower, but still signif.
summary(fm4)
```

```
Linear mixed-effects model fit by REML
```


# Linear mixed-effects model fit by REML

    Data: Machines
    Data: Machines
    
# Random effects:

# Random effects:

# Formula: ~1 + Machine | Worker

# Formula: ~1 + Machine | Worker

# Structure: General positive-definite, Log-Cholesky parametrization

# Structure: General positive-definite, Log-Cholesky parametrization

# StdDev Corr

# StdDev Corr

# (Intercept) 4.0792806 (Intr) MachnB

# (Intercept) 4.0792806 (Intr) MachnB

# MachineB 5.8776433 0.484

# MachineB 5.8776433 0.484

# MachineC 3.6898543-0.365 0.297

# MachineC 3.6898543-0.365 0.297

# Residual 0.9615766

# Residual 0.9615766

# 

# 

# Fixed effects: score ~ Machine

# Fixed effects: score ~ Machine

# Correlation:

# Correlation:

# (Intr) MachnB

# (Intr) MachnB

# MachineB 0.463

# MachineB 0.463

# MachineC -0.374 0.301

# MachineC -0.374 0.301

# 

# 

# Standardized Within-Group Residuals:

# Standardized Within-Group Residuals:

# Min Q1 Med Q3

# Min Q1 Med Q3

# -2.39354008 -0.51377574 0.02690829 0.47245471

```
-2.39354008 -0.51377574 0.02690829 0.47245471
```

```
Max
2.53338699
#
Number of Observations: 54
Number of Groups: 6
between machines.
```

The ANOVA shows that our $F$-value is still larger than in our first model (with $\operatorname{lm}())$, but not as large as in our second model (lm() with interaction). However we now have estimates of differences between our machines that should better reflect our expectation for the population of workers, rather than for only our sample of workers. This is one of the main advantages of mixed effects models.

The astute reader may also have noticed that this is an example of repeated measures - each worker was measured 9 times, and so we'd expect some correlation between measurements from an individual worker. This is another important reason we should include worker as a random effect in this model.

### 18.3 Split-plots

In Chapter 13 we considered one example of a split-plot analysis. We'll revisit this analysis here, beginning with the analysis we introduced in Chapter 13. Review the last section of Chapter 13 if you do not recall the diagnostic features of a split plot. You can see that there is similarity between the correlation of residuals in the repeated measures analysis above (correlation of residuals within subject) and what we might find in a split-plot (correlation of residuals within main plots).

```
Rye <- read.csv("../Data/RyeSplitPlot.csv", comm = "#",
stringsAsFactors = TRUE)
summary(Rye)
```

| \# | P.date | T.date | WdCon | Rep | RyeDM |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | P1:20 | T1:8 | SC: 40 | I :10 | Min. : 104.0 |
| \# | P2:20 | T2:8 |  | II :10 | 1st Qu.: 454.8 |
| \# |  | T3:8 |  | III:10 | Median : 636.0 |
| \# |  | T4:8 |  | IV :10 | Mean : 630.0 |
| \# |  | T5:8 |  |  | 3rd Qu.: 816.0 |
| \# |  |  |  |  | Max. : 1256.0 |
| \# | P.d |  |  | day |  |
| \# | Min. | :257.0 | Min. | :480.0 |  |
| \# | 1st Qu. | :257.0 | 1st | : 492.0 |  |

```
Median :272.5 Median :500.0
Mean :272.5 Mean :500.8
3rd Qu.:288.0 3rd Qu.:513.0
Max. :288.0 Max. :519.0
summary(aov(RyeDM ~ Rep + P.date + T.date + Error(Rep/P.date),
 data = Rye))
#
Error: Rep
Df Sum Sq Mean Sq
Rep 3 72833 24278
#
Error: Rep:P.date
Df Sum Sq Mean Sq F value Pr(>F)
P.date 1 216531 216531 8.152 0.0648 .
Residuals 3 79686 }2656

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
T.date 4 2043518 510879 46.34 5.92e-12 ***
Residuals 28 308693 11025

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The function aov() used here does not create an object that includes residuals, so analysis of the residuals is not straightforward. Let's compare this with the same analysis done using lme()

```
fm1 <- lme(RyeDM ~ P.date + T.date, random = ~1 | Rep/P.date,
 data = Rye)
anova(fm1)
```

The syntax of the argument random is confusing. We've said here that the intercept (1) is random, for each level of Rep and P.date "within" Rep. This is how R knows the error structure. Just as the smallest plots (T. date didn't need to be included in the Error () statement in the formula in aov (), it needn't be included here. Note that P.date is also included as a fixed effect.

Note that the F-values and p-values are very similar. As noted in Chapter 13, all $F$-tests are based on Type $I S S$. If we want something like a Type II $S S$ we
can specify anova(fm1, type="marginal"). In this case it makes no difference because the data is balanced, but of course one can't count on that!

```
summary(fm1)
```

\# Linear mixed-effects model fit by REML
\# Data: Rye
\#
\# Random effects:
\# Formula: ~1 | Rep
\# (Intercept)
\# StdDev: 0.03048389
\#
\# Formula: ~1 | P.date \%in\% Rep
\# (Intercept) Residual
\# StdDev: 53.65659 104.9988
\#
\# Fixed effects: RyeDM ~ P.date + T.date
\# Correlation:
\# (Intr) P.dtP2 T.dtT2 T.dtT3 T.dtT4
\# P.dateP2 -0.517
\# T.dateT2 -0.539 0.000
\# T.dateT3 -0.539 $0.000 \quad 0.500$
\# T.dateT4 -0.539 $0.000 \quad 0.500 \quad 0.500$
$\begin{array}{llllll}\text { \# T.dateT5 } & -0.539 & 0.000 & 0.500 & 0.500 & 0.500\end{array}$
\#
\# Standardized Within-Group Residuals:
\# Min Q1 Med Q3
\# -1.58156310 -0.59932896 -0.02460729 0.40645050
\# Max
\# 3.49696936
\#
\# Number of Observations: 40
\# Number of Groups:
\# Rep P.date \%in\% Rep
plot(fm1)


The output from summary () gives us estimates for the variation associated with the random effects, and estimates for the fixed effects. In this case the residuals look quite good, although there is one value that seems to be an outlier - I leave it to the reader to find it.

Another useful feature of anova() is that it can be used to compare models. For example consider that our model above could include an interaction between P.date and T.date.

```
fm2 <- lme(RyeDM ~ P.date * T.date, random = ~1 | Rep/P.date,
 data = Rye)
anova(fm2)
```

We could directly compare the two models with a call to anova(), but before doing so we need to refit them both using $M L$ rather than $R E M L$ (Maximum likelihood vs restricted maximum likelihood). ${ }^{3}$

```
fm1.ML <- lme(RyeDM ~ P.date + T.date, random = ~1 | Rep/P.date,
 data = Rye, method = "ML")
fm2.ML <- lme(RyeDM ~ P.date * T.date, random = ~1 | Rep/P.date,
 data = Rye, method = "ML")
anova(fm1.ML, fm2.ML)
```

Here the comparison shows that adding the interaction effect increases both AIC and BIC and gives a very non-significant p-value, strongly suggesting the

[^47]simpler model is best. (Note that this is different than the result we get if we call anova() on the models fitted with REML).
Three important notes about lme().
First - the default behavior when NA values are encountered is "na.fail", meaning the call to lme() will return an error. This can be over-ridden using the argument na.action="na.omit".

Second - model fitting by ML or REML is an interative numerical process, and in a few cases it may fail to converge. I've never actually had this occur, but I have had instances in which my model is over-specified, and I get an error message of this sort Error in MEEM (...) : Singularity in Backsolve.... This means that there are too few cases of some treatment combination to allow estimation of all effects. Typically simplifying the model (removing interactions) solves this.

Third - lme() defaults to polynomial contrasts when a factor is ordered. This will give $L$ and $Q$ terms (linear and quadratic) for the ordered factor. If you actually want treatment contrasts, you can either coerce your ordered factor to a non-ordered factor or change R's options for type of contrast using: options(contrasts=c (factor="contr.treatment", ordered="contr.treatment")). If you do so, save your old options as you would using par() and you can restore the original options.

### 18.4 Summary

As noted in the introduction, mixed effects models is a huge topic, and there are many different types of models that can be fit. A good resource is Mixed Effects Models and Extensions in Ecology with R by Zuur et al. There are also many other good resources available on the web, though many seem to be somewhat discipline-specific, so a bit of digging will probably be required.

The newer package lme4 provides a similar function lmer(). At this point lmer () involves some extra steps as p-values are not directly calculated for the fixed effects ${ }^{4}$ but can be estimated via a Markov Chain Monte Carlo approach, and there is a function provided for this.

### 18.5 Exercises

1) Refit the split-plot model for the Rye data from above without the outlier. Do the residuals suggest that the model is valid? How did removing the outlier

[^48]affect the estimation of the fixed and random effects?
2) Another example of a nested model that may be similar to a repeated measures or a split plot can be seen in the dataset RatPupWeight that is included in nlme. Here are weights for 322 rat pups exposed to one of three experimental treatments. We'd expect that weight might be influenced by sex, size of litter and the experimental treatments, but there is likely to be an effect of the mother (litter) also that could mask these others. Fit a mixed effects model of weight as a function of treatment, litter size, and sex with litter as a random effect. How well does this appear to fit the data based on the residuals? Are there significant interactions between the fixed effects? NOTE: Treatment here is coded as an ordered factor, and by default lme() will use polynomial contrasts rather than treatment contrasts for ordered factors. To get treatment contrasts (which we want here) you should convert Treatment to a non-ordered factor using factor (..., ordered=FALSE).

## Chapter 19

## Fitting Other Models

## Non-linear least squared models, logistic regession

### 19.1 Introduction

The model fitting we have done so far has largely been confined to linear models. But there is a wide array of models that we can fit. Here again, as in the last chapter, we will not go deep into these topics - to do so would involve an entire semester. Instead we'll consider two fairly common cases of fitting non-linear models - Logistic regression and fitting arbitrary equations.

### 19.2 Logistic regression

Like the t-test, logistic regression is used when there is one binary response variable (e.g. a factor with two levels ${ }^{1}$ ) and one continuous predictor variable. The difference is that a logistic regression model allows us to predict the probability of the state of the binary response based on the continuous predictor, which the t-test does not allow.

This is sometimes called logit regression because the logit transformation on the data turns this into a linear regression. The logit is the natural log of the odds, where the odds are $p /(1-p)$ and $p$ is the probability of some event occurring. Thus:

$$
\ln \left(\frac{p}{1-p}\right)=a+b x
$$

[^49]The logistic curve should be familiar to anyone who has studied much about population growth, though the formulation used in that context is generally a bit different:

$$
\frac{d N}{d t}=r N\left(1-\frac{N}{K}\right)
$$

where $N$ is the population size and $K$ is the maximum value $N$ can take - the Carrying capacity.
A more general formulation of the logistic curve is:

$$
f(x)=\frac{L}{1+e^{-k\left(x-x_{0}\right)}}
$$

where $L$ is the maximum possible value of $y, x_{0}$ is the midpoint of the curve, and $k$ is the steepness of the curve.

```
curve(2/(1 + exp(-1 * (x - 4))), from = -2, to = 10, ylab = "")
legend("bottomright", inset = 0.02, c(expression(italic(L) ==
 2), expression(italic(x)[0] == 4), expression(italic(k) ==
 1)), bty = "n")
```



The assumptions here are that the observations are independent and that the relationship between the logit (natural log of the odds ratio) and the predictor variable is linear. Note that the second assumption here is just expressing what we noted above where we introduce the term logit.

In R we'll use the function $\operatorname{glm}()$ to fit logistic regressions by specifying family="binomial" in the call to glm().

We'll begin with an example. The package MASS includes the data set menarche, which describes the age at menarche of 3918 girls in Poland in $1965^{2}$. The data includes mean age for a group of girls of the same age (Age), the number in each group (Total) and the number in each group who had reached Menarche (Menarche).

```
library(MASS)
data(menarche)
plot(Menarche/Total ~ Age, data = menarche, ylab = "Proportion
passed menarche")
```



## Age

This is a perfect data set to demonstrate logistic regression as the plot shows for an individual the response can be only no (0) or yes (1), but for the groups proportions can vary between 0 and 1 . Since the response variable here is the number of yesses and number of nos we'll code the response as a data frame using cbind().

```
lr1 <- glm(cbind(Menarche, Total - Menarche) ~ Age, data =
 menarche,
 family = "binomial")
summary(lr1)
```

[^50]```
# Call:
# glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = "binomial",
# data = menarche)
#
# Deviance Residuals:
\begin{tabular}{lrrrrr} 
\# & Min & \(1 Q\) & Median & 3Q & Max \\
\(\#\) & -2.0363 & -0.9953 & -0.4900 & 0.7780 & 1.3675
\end{tabular}
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -21.22639 0.77068 -27.54 <2e-16 ***
# Age 1.63197 0.05895 27.68 <2e-16 ***
# ---
# Signif. codes:
# 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 3693.884 on 24 degrees of freedom
# Residual deviance: 26.703 on 23 degrees of freedom
# AIC: 114.76
#
# Number of Fisher Scoring iterations: 4
```

We can interpret the slope of the model as log of the change in the odds ratio. In this case, the slope (1.632) tells us that each year of age increases the odds of menarche by 5.114 -fold.

Furthermore (though not so interesting) the odds are massively in favor of a "no" for a newborn girl (odds ratio for age $=0$ is $e^{-21.22}$ or $6.051 * 10^{-10}$, about 1.6 billion: 1 odds. This highlights one feature of of logistic regression - the models are often only meaningful over a limited range of the predictor variable - in this case about 10-16 years ${ }^{3}$.

What is more interesting is to use the model to characterize the median age at menarche, or the age at which the probability is 0.5 . Recall the regression equation from above:

$$
\ln \left(\frac{p}{1-p}\right)=a+b x
$$

We want to solve for $p=1-p$; an odds ratio of 1 . Since $\ln (1)=0$, then $x=-a / b$ and we can find this value by dividing the negative of the intercept estimate by the slope estimate.

[^51]```
-summary(lr1)$coef[1, 1]/summary(lr1)$coef[2, 1]
```

\# [1] 13.00662

The model tell us that at 13 years of age the probability is $50 \%$.

```
plot(Menarche/Total ~ Age, data = menarche, ylab = "Proportion
@ passed menarche")
lines(menarche$Age, lr1$fitted, type = "l", col = "red")
abline(v = 13.006, h = 0.5, lty = 3)
```



Age
$\operatorname{par}($ mfrow $=c(2,2), \operatorname{mar}=c(4,4,2.5,0.5))$
plot(lr1)


We don't need to assume normality of the residuals here, but a lack of pattern in the residuals does suggest that the model fits well - there does not seem to be any latent variability that would be explained by adding more terms.

Overall performance of the model can be evaluated by comparing the Null and Residual deviance (see output from summary (lr1), above). The Null deviance represents deviance of a model with only the grand mean, so the reduction in deviance represents the deviance explained by the model - about 3667 on one degree of freedom. In this case the $p$-value is not different from zero.

```
with(lr1, pchisq(null.deviance - deviance, df.null - df.residual,
 lower.tail = FALSE))
```


## \# [1] 0

For a second example let's consider the faithful data we examined in Chapter 6 - we have the length of the eruption (eruptions) and the length of time between one eruption and the next (waiting) for 272 eruptions of the geyser "Old Faithful". For this example we'll create a factor for eruption length

```
data(faithful)
faithful$length <- cut(faithful$eruptions, breaks = c(0, 3,
 6), labels = c("S", "L"))
```

```
with(faithful, plot(waiting, jitter(as.numeric(length) - 1,
 amount = 0.04), ylab = "", yaxt = "n"))
axis(side = 2, at = 0:1, labels = c("Short", "Long"))
```



Here you can see we have plotted the data with a bit of jitter in the $y$-axis to help us better see points that would otherwise over-plot. Notice that here we are dealing with the individual events, so the response is truly binary - either an eruption is "Short" or "Long". We can fit a logistic regression as we did before.

```
lr2 <- glm(length ~ waiting, family = "binomial", data =
faithful)
summary(lr2)
#
Call:
glm(formula = length ~ waiting, family = "binomial", data = faithful)
#
Deviance Residuals:
\# Min 1Q Median 3Q Max
-2.60716 -0.00778 0.00299 0.02362 1.82481
#
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -45.5228 10.7540 -4.233 2.30e-05 ***
waiting 0.6886 0.1632 4.220 2.44e-05 ***
```

```

Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
(Dispersion parameter for binomial family taken to be 1)
#
Null deviance: 354.387 on 271 degrees of freedom
Residual deviance: 25.163 on 270 degrees of freedom
AIC: 29.163
#
Number of Fisher Scoring iterations: 9
```

We'll interpret the coefficients as before - each increase of one minute in the waiting time increases the odds ratio by $\exp (0.6886)$ or 1.99 that the next eruption will be longer than 3 minutes.

For a waiting interval of 63 minutes we can calculate the odds as the exponent of the sum of the intercept and 63 times the slope (exp (summary (lr2) \$coef $[1,1]+63 *$ summary (lr2) \$coef or 0.117 .

As above we can find the point with a $50 \%$ probability by setting the odds ratio equal to 1 or logit $=0$ and solving $a+b x$ for x ; the ratio of the intercept to the slope. This gives a waiting time of 66.11 minutes

```
-summary(lr2)$coef[1, 1]/summary(lr2)$coef[2, 1]
```

```
[1] 66.11345
```

Plotting this model shows that the fit isn't as perfect as the first example, but we're plotting the individual data points were which can't take a value between 0 and 1.

```
with(faithful, plot(waiting, jitter(as.numeric(length) - 1,
 amount = 0.04), ylab = "", yaxt = "n"))
axis(side = 2, at = 0:1, labels = c("Short", "Long"))
lines(cbind(faithful$waiting,
lr2$fitted)[order(faithful$waiting),
], col = "red")
abline(h = 0.5, v = 66.113, lty = 3)
```



One feature of a model of this sort is there is some pattern in the residuals these represent values of waiting for which fitted values are less than about 0.9 and greater than about 0.1 - since the variable "length" can only take a value of "long" or "short", the model can't predict an intermediate value.

```
plot(lr2, which = 1)
```



Logistic regression can be extended with multiple predictors and multinomial
responses, but that is beyond the scope of these notes.

### 19.3 Fitting other non-linear models

Sometimes the model that we want to fit is not linear, but we know (or at least hypothesize) what it should be. For example, enzyme kinetics are often characterized by Michaelis-Menten kinetics, where reaction rate is affected by enzyme concentration in the following way:

$$
f\left(x,\left(K, V_{m}\right)\right)=\frac{V_{m} x}{K+x}
$$

where $V_{m}$ is the maximum reaction rate and $K$ is the concentration that yields half of $V_{m}$. We can fit such an equation to data using the function nls(). We'll demonstrate with some data on the kinetics of Pyridoxal phosphate (PP) which is involved in catalyzing the breakdown of Glutamate.

```
ppg <- read.csv("../Data/PP-Glutamate.csv", comm = "#")
head (ppg)
```

We have concentration of $\mathrm{PP}(\mathrm{PP})$ and the reduction in concentration of Glutamate (Glutam). nls() may work better if we give starting values (guesses) from which it will begin optimizing. Here we'll specify values near the max and half that value.

```
ek1 <- nls(Glutam ~ Vm * PP/(K + PP), data = ppg, start = list(K
G = 0.5,
 Vm = 1))
```

If we had a large data set in might be simpler to specify start this way: list ( $K$ $=\max (\mathrm{ppg} \$ \mathrm{Glutam}) / 2, \mathrm{Vm}=\max (\mathrm{ppg} \$ G l u t a m))$. But this is specific to this particular functional form (Michaelis-Menten), and might not work on types of models. Sometime we can get away with a naive call to nls() without specifying start, as below - we may get a warning, but the coefficients are still calculated correctly. But we can't count on that happening all the time.

```
plot(Glutam ~ PP, data = ppg, ylim = c(0, 1), ylab = "Glutamate
->(mg/min)",
 xlab = "Pyridoxal phosphate (uM)")
paras <- summary(ek1)$coeff[, 1]
curve((paras[2] * x)/(paras[1] + x), from = 0, to = 10, add =
TRUE)
```



```
Warning in nls(Glutam ~ Vm * PP/(K + PP), data = ppg): No starting values specified for some pa
```

\# Initializing 'Vm', 'K' to '1.'.
\# Consider specifying 'start' or using a selfStart model
\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
\# Vm $0.9635160 .0395337324 .3720003 .136878 \mathrm{e}-07$
\# K $1.1377250 .15943859 \quad 7.135821 \quad 3.814812 \mathrm{e}-04$
summary (ek1)
\#
\# Formula: Glutam ~ Vm * PP/(K + PP)
\#
\# Parameters:
\# Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
\# K $1.13772 \quad 0.15944 \quad 7.1360 .000381$ ***
\# Vm $0.963510 .03953 \quad 24.372$ 3.14e-07 ***
\# ---
\# Signif. codes:
\# 0 '***' 0.001 '**' 0.01 '*' $^{\prime} 0.05$ '.' 0.1 ' ' 1
\#
\# Residual standard error: 0.03697 on 6 degrees of freedom

```
#
Number of iterations to convergence: 6
Achieved convergence tolerance: 8.036e-06
```

We have our estimates for the parameters $K$ and $V_{m}$ and t-tests for difference from zero. As we saw in Chapter 11 we can use the Standard errors of these estimates to test hypotheses about them. For example, if we hypothesized that $V_{m}=1$, a quick look at the output from summary (ek1) should convince us that we can't reject that hypothesis because the hypothesized value (1) is within 2 standard errors $\left(2^{*} 0.0395\right)$ of the estimate $(0.964)$. We could also calculate a $p$-value as in Chapter 11.

Note that nls() can handle many types of functions, and we may be trying to fit the wrong model to the data. Checking the residuals is a good way to see how well the model fits. Note that the package nlme is required to plot nls objects.

```
require(nlme)
plot(ek1)
```



In this case there is a hint of structure here (low residuals at low fitted values, higher at high fitted values), but it is harder to be certain with a small number of data points.
Using nls() only makes sense if we have some hypothesized functional form for the relationship - there are an infinite number of possible functional forms, and all nls () can do is tell us how well any one of them fits your data.

If we're comparing models fit by nls() (nls objects) we can use the function anova() to compare 2 models as long as they are nested. Lets fit a 1st order and 2 nd order polynomial to our ppg data to demonstrate.

```
ek2 <- nls(Glutam ~ a + b * PP, data = ppg, start = list(a = 1,
 b = 1))
ek3 <- nls(Glutam ~ a + b * PP + c * PP^2, data = ppg, start =
list (a = 1,
 b = 1, c = 1))
```

Note that here in the calls to nls() we are specifycing our coefficients with a, $b, c$ as names. You can use any names you want for the parameters, but the variable names must match variable names in the data argument.

```
anova(ek2, ek3)
Analysis of Variance Table
#
Model 1: Glutam ~ a + b * PP
Model 2: Glutam ~ a + b * PP + c * PP^2
Res.Df Res.Sum Sq Df Sum Sq F value }\operatorname{Pr}(>F
1 6 0.189460
2 5 0.027118 1 0.16234 29.933 0.002779 **

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(ek3)
#
Formula: Glutam ~ a + b * PP + c * PP^2
#
Parameters:
Estimate Std. Error t value Pr(>|t|)
a 0.186116 0.052679 3.533 0.016686 *
b 0.213932 0.029402 7.276 0.000767 ***
c -0.015311 0.002798 -5.471 0.002779 **

Signif. codes:
O '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
Residual standard error: 0.07364 on 5 degrees of freedom
#
Number of iterations to convergence: 1
Achieved convergence tolerance: 2.223e-08
```

This indicates that the 2 nd order polynomial is a better fit than the 1st order, and it is significant in all parameters. But the residuals plot shows much more evidence of structure than the plot of ek1 residuals and the residual standard error is better. More importantly, we have theoretical reason to prefer the first model.

```
plot(ek3)
```



Note: nls() uses an iterative numerical solver. In some instances it may fail to converge on a solution, and you will get an error message telling you this. You can set the max iterations higher using control = list(maxiter=200, warnOnly=TRUE).

### 19.4 Exercises

1) Using the built-in data set mtcars fit a logistic regression of am (transmission type - a factor coded as $0 \& 1$ for "automatic" and "manual" respectively) as a function of wt (weight in thousands of pounds). At what weight is an automatic transmission three times as likely as a manual transmission? (HINT: Graphing the data will help to figure out the odds you need to solve for.)
2) The dataset given below ${ }^{4}$ comes from a third order polynomial, and includes some random noise. Use nls() to fit both a 1st order $(a+b x)$ and a 3rd order

[^52]$\left(a+b x+c x^{2}+d x^{3}\right)$ and compare the models - how does the residual error compare? Does the distribution of the residuals give any reason to prefer one over the other?

```
x=c}(1.08,4.55,2.92,5.74,8.36,5.84,5.08,8.05,9.74,1.26,4.63,3.43
 8.22,5.52,9.30,7.70,4.10, 1.16,7.89,6.40,7.29,1.96,6.59,4.35,
 4.65)
y=c}(8.42,14.10,15.80,15.60,16.60,17.10,14.80,16.40,21.80,11.50,
 14.20,18.90,16.20,15.40, 20.60,13.40,16.70,15.20,18.30,14.00,
 13.20,15.20,13.30,14.40, 15.40)
```

3) Graph the functions given by the two models you created above over the range $-3: 13$ (this does not mean plot the residuals).

## Chapter 20

## Writing functions

## Customizing R with functions and packages

### 20.1 Introduction

Two of the greatest strengths of R are adpatability and extensibilty -R can be customized to do almost anything (of course this may require time). In many cases, the tool you want may already exist in a package, and the tools we discussed in Chapter 5 should help you find it. In this chapter we'll consider two of the most important tools that support adaptability and extensibility creating new functions and creating packages.

### 20.2 Creating a function

### 20.2.1 Defining a function

It is dead simple to define a function in $R$ - simply use the function function() to define the new function. Some of what follows here is specific to $R$, but some is "common sense" programming advice.

```
fn.demo <- function(x, y) x^2 - y
fn.demo(4, 5)
```

\# [1] 11

Some important detail to note about the use of function()

* The new function (fn. demo() in this case) is created in the user's workspace.

It will only persist between R sessions if the workspace is loaded or if an R script that defines the function is sourced (the code in the file is run). * The syntax here is idiosyncratic - the parentheses contain the arguments for the new functions. The code that is run when the function is called is given after the parentheses. For a simple function such as we have here, when everything fits on one line, no braces are necessary. If the function requires more than a single line (includes a line break) the braces ( $\}$ ) are necessary.

```
fn.demo <- function(x, y = 5) {
 x^2 - y
}
fn.demo(4)
```

\# [1] 11
fn. demo(4, $\mathrm{y}=2$ )
\# [1] 14
fn.demo (y $=2, x=4)$
\# [1] 14

In this example we show how default values can be specified in the function definition. As long as no value is specified for $y$, then the default value is used. Named arguments can be passed in any order. What will happen if we call this function without a specified value for x ? (Check your guess.)

Now we'll add a bit more complexity to the function. Before you run this code, remove $z$ from your workspace/enviromnent (rm(z)) in case there was something called $z$ in the workspace).

```
fn.demo <- function(x, y = 5, verbose = FALSE) {
 z <- x^2 - y
 if (verbose == TRUE) {
 cat(paste(x, " squared minus ", y, " = ", z, sep = ""))
 } else {
 return(z)
 }
}
fn.demo(5)
```

\# [1] 20

```
fn.demo(3, ver = TRUE)
3 squared minus 5 = 4
z
Error in eval(expr, envir, enclos): object 'z' not found
```

This demonstrates an important point. After running our fn. demo() function a couple of times we call $z$ but it does not exist, though it is defined in the function. This highlights that functions are not evaluated in the user workspace, rather they are evaluated in a separate environment. This means that $z$ is created in a different environment where the function is evaluated. This has a couple of important implications. First, you can name objects in your function without concern about conflicting or overwriting objects in the user environment when the function is called. Second - if you want to get a value out of a function you need to make the function return the value using return(). Note that if the end of the function is reached and return() has not been called the last expression evaluated will be returned.

```
fn.demo <- function(x, y = 5, verbose = FALSE) {
 z <- x^2 - y
 if (verbose == TRUE) {
 cat(paste(x, " squared minus ", y, " = ", z, sep = ""))
 } else {
 return(z)
 }
 z ## <- added
}
fn.demo(5)
```

\# [1] 20
fn. demo(5, ver = TRUE)
\# 5 squared minus $5=20$
\# [1] 20

We can demonstrate this by adding a line $\mathbf{z}$ (see \#\# added, above). If we call fn. demo() with verbose=T the if() expression avoids the call to return()
and so z is returned. With verbose=F (default) the return() is evaluated and so $z$ is not returned a second time.

If you want to return more than one value you can return a vector, list, or data frame (depending on what makes sense), and such an object can be assigned or indexed like any other vector in $R$.

```
fn.demo <- function(x, y = 5) {
 c(x, y, x^2 - y)
}
fn.demo(6)
```

\# [1] $6 \quad 531$
fn. demo(6) [3]
\# [1] 31
a <- fn.demo(3.7)
a
\# [1] 3.705 .008 .69

In general functions are expected to return objects, and to have no other effects. This almost always means that you must assign the output of a function if you want to use it later (you've probably noticed this by now). However there may be occasions where it might make sense to have a function that modifies an object that exists in the user's workspace. In this case we use the <<- operator ${ }^{1}$. Note that the use of the <<- operator means that your function is now making assumptions about the context from which it is called, and this adds all sorts of opportunity for failure and mayhem.

```
a <- 5
bad.fn <- function(b = 7) {
 a <<- b
}
a
```

\# [1] 5

[^53]bad.fn(14)
a
\# [1] 14

This example is ridiculously simplistic, and it doesn't make sense to do this you could just assign the output of the function to a variable. However, there may be situations where it might make sense to do this - for example if one were working with large arrays of data the copying of the data that would be required to return the entire matrix might slow down processing enough to make it worthwhile to write a function using the <<- operator.

My advice is: if use of <<- seems warranted, it would be worth writing the function so as to also print a message about the object that was changed. What we want to avoid is creating functions that have invisible side effects. Recall that in general the only way to change an object in $R$ is via explicit assignment - functions written with <<- violate this situation, and so should only be undertaken with great care.

### 20.2.2 Finding and preventing errors

This brings us to the topic of finding and preventing errors. Lets see what happens when we call our function with the wrong type of data as an argument.

```
fn.demo <- function(x, y = 5) {
 z<- x + 10 - y
 return(z)
}
```

```
fn.demo(x = "black")
```

\# Error in $\mathrm{x}+10$ : non-numeric argument to binary operator

Here we've fed our function a character value when it was expecting a numeric value. In this case it is rather easy to find the error, but in a longer function in might be rather difficult. The function debug() can help us track down problems in functions. We'd call the function like this:

```
debug(fn.demo)
fn.demo(x = "black")
```

Use of debug () can't be easily demonstrated in a document like this - you'll need to try it yourself by running it in the console. Note that we actually run 2 lines to get debug () working - the first launches debug() on the next expression. Using debug() gives us a view into the environment where the function is evaluated in RStudio we see the function environment in the environment browser rather than our workspace when we are running debug(). This can help understand the source of errors, as we can determine the structure and content of an object within the function. (Note: Since debug() is an interactive funciton, you can't easily use it in compiled documents, which is why the code I demonstrated above was not run).

Of course, preventing errors is even better than finding them when they occur. We can use the function stop() to halt execution and print an error message.

```
fn.demo <- function(x, y = 5) {
 if (is.numeric(x) == FALSE | is.numeric(y) == FALSE)
 stop("don't be ridiculous \n x & y must be numeric")
 z<- x + 10 - y
 return(z)
}
fn.demo(x = "black")
```

```
Error in fn.demo(x = "black"): don't be ridiculous
```

\# x \& y must be numeric

The most insidious errors are those in which a function returns a value but returns the wrong value. A common cause (but certainly not the only cause) of this behavior is missing values.

```
mean.se <- function(x) {
 m <- mean(x)
 se <- sd(x)/(sqrt(length(x)))
 cat(paste("mean = ", m, "; se = ", se, "\n"))
}
a <- c(2, 3, 4, 5, 6)
mean.se(a)
mean = 4; se = 0.707106781186548
b <- a
b[3] <- NA
mean.se(b)
mean = NA ; se = NA
```

Here we get a correct result when there are no missing values and the NA value propagates if there is an NA. This is not too bad because we know we have a problem (though if the function was more complex finding the problem might not be tough). A more serious problem would arise if we incompletely fixed the NA problem.

```
mean.se <- function(x) {
 m <- mean(x, na.rm = TRUE)
 se <- sd(x, na.rm = TRUE)/(sqrt(length(x)))
 cat(paste("mean = ", m, "; se = ", se, "\n"))
}
mean.se(a)
mean = 4 ; se = 0.707106781186548
mean.se(b)
mean = 4 ; se = 0.816496580927726
```

The function runs and returns values, but does not return the value we intended because we are including NA values in our calculation of $n(l e n g t h(x))$.

```
mean.se <- function(x) {
 m <- mean(x, na.rm = TRUE)
 se <- sd(x, na.rm = TRUE)/(sqrt(sum(is.na(x) == FALSE)))
 cat(paste("mean = ", m, "; se = ", se, "\n"))
}
mean.se(a)
mean = 4 ; se = 0.707106781186548
mean.se(b)
mean = 4 ; se = 0.912870929175277
```

Of course, this example is obvious as so many are - it is hard to make a simple demonstration of a subtle problem.

### 20.2.3 Tips for writing functions

- Break the problem down into steps and write several functions - this modularity makes debugging easier and allows you to reuse more of your code.
- Name arguments as clearly as possible.
- Comment your code liberally.
- Think imaginatively about what could go wrong, check inputs, and provide intelligible error messages.

Developing custom functions could save a lot of time and make your work simpler. This blog post (http://rforpublichealth.blogspot.com/2014/07/3-ways-that-functions-can-improve-your.html) provides some examples.

If you develop functions that are useful for your work you could store them in a special $R$ script file. It is possible to modify your $R$ environment to source this file on start-up - see (http://www.statmethods.net/interface/customizing.html). But if you get to that point you might want to consider creating a package.

### 20.3 Creating a package

If we think of R packages as items that are available from the repositories we may miss some of their utility. A package could be a useful tool for loading custom functions and including some documentation on their use. It could be a tool for sharing tools, routines, and even data among collaborators. While the $R$ packages that we access from CRAN have been approved, we can rather easily create our own packages.

First we'll install some packages.

```
install.packages("devtools")
install.packages("roxygen2")
library(devtools)
library(roxygen2)
```

Now we can go ahead and create the package.

```
create("easy.demo")
```

Your working directory will now contain a folder called easy.demo. This includes several files. The first one you should attend to is the "DESCRIPTION"
file. Basically provide your contact information and a short description of the package contents.

Now we'll copy the function mean.se() from our last example above, paste it into a new R script file and save it as "meanANDse.R" in the " R " directory in the "easy.demo" folder.
Now we need to add documentation. This will be done mostly automatically by roxygen2. We'll paste these specially formatted comments into the beginning of the "mean_se.R" file, and then save. Obviously, for your own function you would add the relevant documentation here.

```
#' Mean and Standard Error
#'
#' This function returns mean and standard error of the mean.
#' @param x An object whose mean and se will be returned.
#' @keywords summary
#' @export
#' @examples
#' a <- rnorm(n=15,mean=6,sd=4)
#' mean_se(a)
```

Now all we need to do is set our working directory to the the "easy.demo" folder and invoke the function document ()

```
setwd("easy.demo")
document()
setwd("..")
```

All that is left to do is install it.

```
install("easy.demo")
```

Type ? mean. se and see if it worked.

```
meanANDse(a)
```

\# mean $=4$; se $=0.707106781186548$

Not too difficult. Notice that easy.demo does not appear in your "Packages" tab. It was installed using install() from the devtools package. A full installation would be done like this:

```
install.packages("easy.demo",repos=NULL,type="source")
```

Note that _ and any mathematical operators ( $+,-, *, /$, and ${ }^{\wedge}$ ) can’t be used in function names in packages. The period (.) can be used in function names but it has special meaning - if we named this function within the package mean.se it would be interpreted as a function to determine the mean of objects of type se - this is how generic function are denoted (E.G. plot. $\operatorname{lm}()$ is the function that plots a regression line from an lm object, when we call plot() on an lm object, plot. $\operatorname{lm}()$ actually does the work). This is useful if you develop a function that creates an object of type mess- you can develop methods like summary.mess() and plot.mess() to extend generic R functions to deal with your new object type.
A comprehensive guide to developing $R$ packages is beyond these notes, and several exist already ${ }^{2}$. Instead I will include a couple of helpful links here should you want to investigate this further. I used several resources while developing this demo, this page was the most useful. There is also an RStudio page that give more information.

### 20.4 Exercises

1) Write a function that does something interesting or amusing. The goal is not massive complexity (but it should require more than a couple of lines of code), just that you play around a bit with something that is a somewhat more complex than the trivial examples we've included here. Your function should include some basic error checking with informative error messages (for example making sure arguments are of the correct type).
If you're at a loss for ideas here are a few: 1) calculate a vector of differences between row and column sums of a square matrix (see ?colSums); 2) take a text string and extract numbers from it to generate several random polygons; 3) extract coefficients and calculate their $95 \%$ confidence intervals and plot them.
Note: You will need to add the chunk option error=TRUE to R code chunks that might produce errors (or as a document option) if you want errors to show up in your knitr output - otherwise errors stop compilation.
[^54]
[^0]:    ${ }^{1}$ Object names in R: In brief they consist of letters, numbers, and the dot and underscore characters. Names must begin with a letter or a dot followed by a letter. The dot has no special meaning in object names in $R$.
    ${ }^{2}$ A problem that will prevent saving files from the editor: failure to extract the Essential R folder. In a few cases Windows users have been unable to save anything into the Essential R folder they downloaded. This has always been caused by failure to actually extract ("unzip") the file to create a folder in the user's home folder on the hard-drive of the computer.

[^1]:    ${ }^{3}$ This is a basic point that is very important, and often forgotten.

[^2]:    ${ }^{4}$ Tip: Many text editing programs (including the editor in RStudio) will balance parentheses and brackets - when you type ( the matching ) is added, and the cursor is placed within them. Also, when you place your cursor on a parenthesis or bracket the matching on will be highlighted. If your text editor does not do this, find one that does - it will save you many headaches.

[^3]:    ${ }^{5}$ This is not unique to edit(). R will not change something in your environment unless you explicitly tell it to do so. This is actually a good thing if you think about it.
    ${ }^{6}$ Note that interactive functions like this also will cause problems after we learn how to compile documents in R (Chapter 4).

[^4]:    ${ }^{7}$ All this talk about sandwiches requires a link to [this cartoon] (https://xkcd.com/149/).

[^5]:    ${ }^{1}$ If there were many levels, only the first 5 or 6 would be shown.

[^6]:    ${ }^{2}$ In practice I enter rather little data when using R for analysis - mostly I import the data, as we'll see later.

[^7]:    ${ }^{3}$ Note that this is not the most computationally efficient way to accomplish this, but is the easiest to remember. The recommended approach is as.numeric(levels(a)[a]), which showcases the power of the [] in R.

[^8]:    ${ }^{1}$ The "upper hinge" is the median of the data points above the median. Depending on the number of data points, this may differ from the 3rd quartile.

[^9]:    ${ }^{2}$ The trimmed mean is taken after removing ("trimming") the upper and lower ends of the data, in this case we specified $10 \%$ via the trim=0.1 argument.
    ${ }^{3}$ The default value of the constant is 1.4826 , as this gives a value comparable to standard deviation for normally distributed data.

[^10]:    ${ }^{4}$ The $r$ in rnorm() means "random"; runif() generates some uniformly distributed random data, and many others are included - see ?Distributions

[^11]:    ${ }^{1}$ Spreadsheets are hugely powerful; the difficulty in annotating and narrating the logic behind spreadsheets is probably their greatest shortcoming.

[^12]:    ${ }^{2}$ The RStudio notebook function is built on the function render() in the package rmarkdown, so if you don't use RStudio you can use rmarkdown::render(), as introduced below. The package rmarkdown was created based on the package knitr, which created by Yihui Xie while he was a PhD student in statistics - he now works for RStudio.
    ${ }^{3}$ Arguably $\# 2$ and $\# 3$ are just two sides of the same coin, and so there are only three things.

[^13]:    ${ }^{4}$ Actually, there are a few other kinds of comments that are possible: those that begin with \#'\#\# will be formatted as headings, with one trailing \# (i.e. \#'\#) as a top level heading and 6 trailing \# as a 6th level heading. Also, \#' ------ will create a horizontal line.

[^14]:    ${ }^{5}$ As long as you have an internet connection. If you don't have an internet connection, it is harder. You have to find some way to get the source version of the package file onto your machine, and you can then install and compile the package from source as follows: install.packages(repos=NULL,type="source",pkgs=file.choose()), and point your file browser to the package file. If the file has a .tar.gz extension, use type="source", if the extension is .zip use type="win.binary".
    ${ }^{6}$ You should only have to install a package once on a given machine - this downloads it and copies it into the R library folder. Packages need to be loaded in every R session where they need to be used. When you compile using the RStudio "notebook" button, you don't need to load it - that happens automagically.
    ${ }^{7}$ You can set this from the console using setwd("path/to/directory") or from the menu using Session>Set Working Directory>To Source File Location - the latter will set the working directory to the folder that contains the active document in the editor.

[^15]:    ${ }^{1}$ As we'll see later, searching online may be more profitable until you have a function name.

[^16]:    ${ }^{2}$ I have never needed to post a question - someone else has always asked my questions before me. This either means that there are a lot of $R$ users asking questions or that my questions are not very original.

[^17]:    ${ }^{1}$ Number of engine cylinders is a nice example of a numeric factor. Not only are the values constrained to integer values, but there are only a few values that are common, although there have been a few 3 or 5 cylinder engines. Such a factor could be treated as "ordered", but that is beyond the scope of these notes. This variable might also be treated as numeric - the analyst would have to decide what makes the most sense here.
    ${ }^{2}$ This data is found in the mtcars data set that is included with $R$ : as we'll see later you can access the whole data set using data(mtcars).

[^18]:    ${ }^{3}$ You can also change this by changing R's options - see ?options. The advantage of using signif () is that it is temporary and specific to the current command.

[^19]:    ${ }^{4}$ Restoring the old par settings is sometimes important - once we split the plotting window it stays split, and we might not want it to.

[^20]:    ${ }^{5} \mathrm{We}$ could omit the names of the x and y arguments, the first will be taken as x and the second as y. Also plot(hp~disp) would work.

[^21]:    ${ }^{6}$ Not to be confused with reshape2, by the same author. There are some differences between the original reshape and the newer reshape 2 - the newer version is much faster for large datasets, but does not have quite all the funcitonality of reshape.
    ${ }^{7}$ Do recall that you need to then load the package either via library (reshape), or via RStudio's packages pane. Note that if you are using knitr, you will need to include the code to load the package (e.g. library (reshape)) in you file, since it will need to be loaded into the clean workspace where knitr evaluates the code.

[^22]:    ${ }^{8}$ Though possibly not the fastest - advanced $R$ users will sometimes say that you should use an apply() function rather than a loop because it will run faster. This is probably only a real concern if you have very large data sets.

[^23]:    ${ }^{1}$ In practice, regression and ANOVA methods are fairly robust to some degree of nonnormality in the residuals, but substantial non-random patterning in the residuals is cause for concern as it indicates either need for transformation of the response or an inadequate model (or both).

[^24]:    ${ }^{2}$ This data shows strong "root:shoot allometry" - the slope of $\log$ (Root) $\log$ (Shoot) is constant across treatments, indicating that while a treatment might reduce overall size, it doesn't alter the fundamental growth pattern. See work by Karl Niklas and others on this topic.

[^25]:    ${ }^{3}$ This applies to the t- and p-values shown in the summary for any lm object.

[^26]:    ${ }^{4}$ More precisely, the newdata= argument for predict() needs to be a data.frame with the same variable names as the predictors in the model for which predictions are being made.

[^27]:    ${ }^{1}$ By default factor levels are assigned by alpha-numeric order, so the default order for levels "H", "M", and "L" would be "H=1; L=2, M=3". This doesn't make sense in this case (though it wouldn't change the estimates of group means or differences between them). We saw how to fix this in Chapter 2.5.

[^28]:    ${ }^{2}$ The syntax is potentially confusing - unfortunately anova( $\operatorname{lm}(y \sim x$, data $=d f)$ ), summary $(\operatorname{lm}(y \sim x$, data $=d f))$, and $\operatorname{aov}(y \sim x$, data $=d f)$ are so confusingly similar.

[^29]:    ${ }^{3}$ Of course, this assumes that you knew or guessed what the "right" predictors might be and measured them.

[^30]:    ${ }^{4}$ Using tapply () in this way will only produce the same values as predict () for a saturated model, i.e. one that contains all factors and interactions! Also note that if there were any NA values in the data they would propagate as we haven't added na.rm=TRUE.

[^31]:    ${ }^{5}$ A more complete interpretation is that increasing tension reduces the number of breaks, but this occurs at a lower tension for wool A than it does for wool B.

[^32]:    ${ }^{1}$ For a slightly longer introduction to multiple regression, see Section 14 in "SimpleR" by John Verzani. For a longer, more in-depth introduction see Chapter 11 in "Statistics: An Introduction using R" by Michael Crawley.

[^33]:    ${ }^{2}$ Three way interactions (higher order interactions in general) are very difficult to interpret - in this case, the effect of Acid concentration on stackloss depends on the combination of airflow and water temperature.

[^34]:    ${ }^{3}$ This represents the sum of the estimates for planting date 1 (interecept) and planting date 2 .

[^35]:    ${ }^{4}$ This design was selected for logistical reasons - given the equipment available, it was simpler to plant larger plots and kill sub-plots ad different times. The rye cover crop was killed with a roller-crimper rather than with herbicides, so killing small plots was feasible.

[^36]:    ${ }^{1}$ Sort of - as we'll see it may be thought of as 2 files.

[^37]:    ${ }^{2}$ More information of advanced document features can be found [here] (http://rmarkdown. rstudio.com/html_document_format.html)
    ${ }^{3}$ The header is sometimes referred to as the "YAML metadata block".
    ${ }^{4}$ More information of advanced document features can be found [here] (http://rmarkdown. rstudio.com/html_document_format.html)

[^38]:    ${ }^{5}$ To set the CRAN mirror go to "Tools>Global Options" (Mac: "RSTudio>Preferences") and select the "Packages" tab and select a CRAN mirror from the menu - the nearest one is probably best.
    ${ }^{6}$ If you are comfortable with LaTeX you can use File $>$ New $>$ RSweave to open a LaTeX file that you can insert code chunks into, but the syntax is different than markdown.

[^39]:    ${ }^{7}$ You will probably also need to install LaTeX if you don't already have it installed, and you may need to install additional software. This will be OS specific, and I don't cover it here. If you are using LaTeX, you can figure it out.

[^40]:    ${ }^{1}$ In fact, I often see info-graphics online or in print publications that are almost certainly made with $R$, in places like the New York Times

[^41]:    ${ }^{2}$ Note that the text string Weed density", " (plants " is broken into 2 pieces - this is not necessary for $R$, but results in neater line wrapping in these notes.

[^42]:    ${ }^{3}$ When you change the size of the plot window, graphic elements are re-sized, and sometimes this doesn't make you figure more readable. You can see this by observing how a plot changes when you click the "Zoom" button above the plot and re-size the window.
    ${ }^{4}$ The units are inches - I have no idea why inches and not cm !
    ${ }^{5}$ When developing complex graphics, I usually include a call to quartz() that specifies the for the figure as the first line in the plot chunk. I also include the the chunk options fig.width= and fig.height= specifying the same dimensions as the call to quartz(), and the chunk option eval= -1 so the call to quartz() is ignored when compiling.

[^43]:    ${ }^{1}$ Though using legend() is an improvement over just using text(), which is how I did it at first.
    ${ }^{2}$ The measurements were made on both sides of the road (up and down hill), but here we'll use just one.

[^44]:    ${ }^{1}$ You can find more than you want to know about this data here.

[^45]:    ${ }^{1}$ The assumption of constant variance and independence of the residuals are not really separate assumptions - a pattern in the residuals indicates some dependence in them.

[^46]:    ${ }^{2}$ Though it is worth bearing in mind that unless you have a minimum of 4 or 5 levels for a factor you are not likely to have sufficient ability to estimate random effects, so effects that are theoretically random may in some cases be analyzed as fixed.

[^47]:    ${ }^{3}$ Mixed effects models can't be solved analytically like simple linear models - they are solved numerically.

[^48]:    ${ }^{4}$ The authors provide some good reasons for this - basically that "decomposition of the error term into random effects and error changes the error degrees of freedom and there is no consensus among statistical theoreticians on what the correct error df to use for the $F$-tests is."

[^49]:    ${ }^{1}$ A multiple level factor can be used as the response in multinomial logistic regression RSeek can point you to more information.

[^50]:    ${ }^{2}$ Data from: Milicer, H. and Szczotka, F., 1966, Age at Menarche in Warsaw girls in 1965, Human Biology, 38, 199-203

[^51]:    ${ }^{3}$ This applies much more broadly to linear models of all kinds - they probably don't make sense outside of the range of the data from which they were characterized.

[^52]:    ${ }^{4}$ If you copy and paste this data into the console you may have to delete some returns and add ";" before the y , or just paste the x and y data separately.

[^53]:    ${ }^{1}$ Actually it is a bit more subtle - when <<- is used in an assignment the assignment occurs in the environment from which the function was called. This could be the workspace, but if the function is called by another function it could be the environment where the calling function is evaluated.

[^54]:    ${ }^{2}$ The definitive guide can be found at (http://cran.r-project.org/doc/manuals/R-exts. html).

