# 2.8 - Equivalent linear relationship tests

2.8 - Equivalent linear relationship tests

It should be noted that the three hypothesis tests we have learned for testing the existence of a linear relationship — the t-test for $$H_{0} \colon \beta_{1}= 0$$, the ANOVA F-test for $$H_{0} \colon \beta_{1} = 0$$, and the t-test for $$H_{0} \colon \rho = 0$$ — will always yield the same results. For example, when evaluating whether or not a linear relationship exists between a husband's age and his wife's age, if we treat husband's age ("HAge") as the response and wife's age ("WAge") as the predictor, each test yields a P-value of 0.000... < 0.001 (Husband and Wife data):

##### Analysis of Variance
Regression 1 20577 20577 1242.51 0.000
Error 168 2782 17
Total 169 23359
##### Model Summary
4.06946 88.09% 88.02% 87.84%
##### Coefficients
Predictor Coef SE Coef T-Value P-Value
Constant 3.590 1.159 3.10 0.002
WAge 0.96670 0.02742 35.25 0.000
##### Regression Equation

HAge = 3.59 + 0.967 WAge
*48 rows unused

##### Correlation: HAge, WAge
 Pearson correlation 0.939 P-Value 0

And similarly, if we treat wife's age ("WAge") as the response and husband's age ("HAge") as the predictor, each test yields of P-value of 0.000... < 0.001:

##### Analysis of Variance
Regression 1 19396 19396 1242.51 0.000
Error 168 2623 16
Total 169 22019
##### Model Summary
3.951 88.1% 88.0%
##### Coefficients
Predictor Coef SE Coef T-Value P-Value
Constant 1.574 1.150 1.37 0.173
HAge 0.91124 0.02585 35.25 0.000
##### Regression Equation

WAge = 1.57 + 0.911 HAge

*48 rows unused

##### Correlation: WAge, HAge
 Pearson Correlation 0.939 P-Value 0

Technically, then, it doesn't matter what test you use to obtain the P-value. You will always get the same P-value. But, you should report the results of the test that make sense for your particular situation:

• If one of the variables can be clearly identified as the response, report that you conducted a t-test or F-test results for testing $$H_{0} \colon \beta_{1} =0$$. (Does it make sense to use x to predict y?)
• If it is not obvious which variable is the response, report that you conducted a t-test for testing $$H_{0} \colon \rho = 0$$. (Does it only make sense to look for an association between x and y?)

  Link ↥ Has Tooltip/Popover Toggleable Visibility