Example Section
Suppose investigators plan an intervention study to help individuals lower their cholesterol, and randomize patients to participate in their new intervention or a control group. They hypothesize at the end of their 6-month intervention the intervention group will have cholesterol levels down to about 5.3, while the control group's cholesterol levels will still be about 6. They assume the standard deviation will still be about 1.4.
Formula Section
We are interested in testing the following hypothesis:
\(\begin{array}{l}
\mathrm{H}_{0}\colon \mu_{1}=\mu_{2} \\
\mathrm{H}_{1}\colon \mu_{1}-\mu_{2}=\delta,
\end{array}\)
The formula needed to calculate the sample size is:
\(\displaystyle{n=\frac{(r+1)^{2}\left(z_{\alpha}+z_{\beta}\right)^{2} \sigma^{2}}{\delta^{2} r}}\)
Where...
- \(\mu_{1}\)= hypothesized mean in group 1
- \(\mu_{2}\)= hypothesized mean in group 2
- \(\delta\)= difference in means (null hypothesis \(\delta = 0\), alternative hypothesis \(\delta \ne 0\))
- \(\sigma\) = standard deviation
- \(r = \dfrac{n_1}{n_2}\)
For our example, we need n=172, with 86 per group.
Table B.7. Sample size requirements for testing the value of a single mean or the difference between two means.
The table gives requirements for testing a single mean with a one-sided test directly. For two-sided tests, use the column corresponding to half the required significance level. For tests of the difference between two means, the total sample size (for the two groups combined) is obtained by multiplying the requirement given below by 4 if the two samples sizes are equal or by \((r+1)^{2} / r\) if the ratio of the first to the second is \(r : 1\) (assuming equal variances). Note that \(S\) = difference/standard deviation. |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
5% Significance |
2.5% Significance |
1% Significance |
0.5% Significance |
0.1% Significance |
0.05% Significance |
|||||||
\(S\) | 90% Power |
95% Power |
90% Power |
95% Power |
90% Power |
95% Power |
90% Power |
95% Power |
90% Power |
95% Power |
90% Power |
95% Power |
0.01 | 85 639 | 108 222 | 105 075 | 129 948 | 130 170 | 157 705 | 148 794 | 178 142 | 191 125 | 224 211 | 209 040 | 243 580 |
0.02 | 21 410 | 27 056 | 26 269 | 32 487 | 32 543 | 39 427 | 37 199 | 44 536 | 47 782 | 56 053 | 52 260 | 60 895 |
0.03 | 9 516 | 12 025 | 11 675 | 14 439 | 14 464 | 17 523 | 16 533 | 19 794 | 21 237 | 24 913 | 23 227 | 27 065 |
0.04 | 5 353 | 6 764 | 6 568 | 8 122 | 8 136 | 9 587 | 9 300 | 11 134 | 11 946 | 14 014 | 13 065 | 15 224 |
0.05 | 3 426 | 4 329 | 4 203 | 5 198 | 5 207 | 6 309 | 5 952 | 7 126 | 7 645 | 8 969 | 8 362 | 9 744 |
0.06 | 2 379 | 3 007 | 2 919 | 3 610 | 3 616 | 4 381 | 4 134 | 4 949 | 5 310 | 6 229 | 5 807 | 6 767 |
0.07 | 1 748 | 2 209 | 2 145 | 2 652 | 2 657 | 3 219 | 3 037 | 3 636 | 3 901 | 4 576 | 4 267 | 4 972 |
0.08 | 1 339 | 1 691 | 1 642 | 2 031 | 2 034 | 2 465 | 2 325 | 2 784 | 2 987 | 3 504 | 3 267 | 3 806 |
0.09 | 1 058 | 1 334 | 1 298 | 1 605 | 1 608 | 1 947 | 1 837 | 2 200 | 2 360 | 2 769 | 2 581 | 3 008 |
0.10 | 857 | 1 083 | 1 051 | 1 300 | 1 302 | 1 578 | 1 488 | 1 782 | 1 912 | 2 243 | 2 091 | 2 436 |
0.15 | 381 | 481 | 467 | 578 | 579 | 701 | 662 | 792 | 850 | 997 | 930 | 1 083 |
0.20 | 215 | 271 | 263 | 325 | 326 | 395 | 372 | 446 | 478 | 561 | 523 | 609 |
0.25 | 138 | 174 | 169 | 208 | 209 | 253 | 239 | 286 | 306 | 359 | 335 | 390 |
0.30 | 96 | 121 | 117 | 145 | 145 | 176 | 166 | 198 | 213 | 250 | 233 | 271 |
0.35 | 70 | 89 | 86 | 107 | 107 | 129 | 122 | 146 | 157 | 184 | 171 | 199 |
0.40 | 54 | 68 | 66 | 82 | 82 | 99 | 93 | 112 | 120 | 141 | 131 | 153 |
0.45 | 43 | 54 | 52 | 65 | 65 | 78 | 74 | 88 | 95 | 111 | 104 | 121 |
0.50 | 35 | 44 | 43 | 52 | 53 | 64 | 60 | 72 | 77 | 90 | 84 | 98 |
0.55 | 29 | 36 | 35 | 43 | 44 | 53 | 50 | 59 | 64 | 75 | 70 | 81 |
(from Woodward, M. Epidemiology Study Design and Analysis. Boca Raton: Chapman and Hall, 2013, p.770)