
 1

STAT 508 – Introduction to Statistical Learning
and Exploratory Data Analysis (Lesson 1)

Lesson 1 Objectives:

1.1. Explain the difference between supervised and unsupervised learning.
1.2. Explain the difference between regression and classification.
1.3. Explain the difference between inference and prediction.
1.4. Gain proficiency in R programming by understanding its distinction from RStudio, using

built-in functions, installing packages and loading libraries, and loading datasets from
various sources into R.

1.5. Perform an exploratory data analysis, including the calculation of summary statistics and
data visualization, to gain insights from the data.

1.6. Perform data wrangling tasks such as subsetting a dataset and creating new variables.

Lesson 1 Outline:

1. Introduction to Statistical Learning
a. Statistical Learning Terminology
b. Common Goals

2. Toolkit
a. Overview of Tools
b. RStudio Tour/Basic Functionality

i. R as a calculator and using functions
ii. Storing and using objects
iii. Accessing help files
iv. Common mistakes (typos, case, incomplete command)
v. Reading and using external data
vi. Installing Packages and loading libraries

c. R Markdown
i. Purpose
ii. Structure
iii. Examples

3. Exploratory Data Analysis (EDA)
a. Overview
b. Data Visualization and Numerical Summaries

i. Types of plots
ii. Layers of ggplot and aesthetics
iii. Examples of visualization
iv. Numerical summaries

c. Data Wrangling
i. dplyr verbs
ii. Command chains
iii. Examples

 2

Introduction to Statistical Learning

Statistical Learning Terminology

Definition: Statistical learning refers to a vast set of tools for understanding and discovering
structures in data. These tools can be classified as supervised or unsupervised.

EXAMPLE: (Statistical Learning Overview) The following diagram shows the types of statistical
learning problems covered in STAT 508:

Terminology:

• Supervised learning involves building a statistical model for predicting, or estimating, an
output based on one or more inputs. We can view supervised learning as using a function
that maps input variable(s) to an output.

o Input variables go by many names, such as: x, explanatory, predictor, regressor,
independent, and feature.

o The output variable also has many names, such as: y, response, dependent,
target, outcome, and label.

o Supervised learning problems fall into two broad categories.
▪ Regression techniques are used when the output variable is quantitative.
▪ Classification techniques are used when the output variable is categorical or

qualitative.

• In unsupervised learning, there are inputs but no supervising output; nevertheless, we
can learn relationships and structure from such data. The unsupervised learning problems
we cover fall into two broad categories

o Dimension reduction is a technique for transforming high dimensional data into a
low dimensional space, while preserving useful properties of the data.

o Clustering is a technique that involves finding subgroups, or clusters, in a dataset
so that the observations within the same group are quite “similar” to each other,
while observations in different groups are quite “different” from each other.

Supervised
 Learning

Regression Classification

Unsupervised
 Learning

Dimension
Reduction

Clustering

Statistical
 Learning

 3

Common Goals

Our primary focus will be on supervised learning problems. Suppose that we observe a
quantitative response, 𝑌, and 𝑝 predictors, 𝑋1, 𝑋2, … , 𝑋𝑝. Assuming there is a relationship between

𝑌 and 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝), we describe the general form of the relationship as:

General Form of Regression Problem: 𝑌 = 𝑓(𝑋) + 𝜖

EXAMPLE: (General Regression Form): For each, identify the systematic components.

a. (Multiple linear regression) 𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜖𝑖

b. (Exponential regression) 𝑦𝑖 = 𝛽0 + 𝛽1𝑒𝛽2𝑥𝑖 + 𝜖𝑖

NOTE: There are two main reasons for estimating 𝑓: Prediction and Inference.

 Prediction:

• Setting: We want to predict Y as accurately as possible

• Implementation: Predict Y using 𝑌̂ = 𝑓(𝑋) where 𝑓 is an estimate of 𝑓

Inference:

• Setting: We want to understand/explain the association between X and Y

• Implementation: Understand the nature of 𝑓

• Types of Questions:
o Which predictors are associated with the response?
o Is a linear relationship appropriate?
o How does each predictor affect the response?

While many problems involve a combination of prediction and inference, the approach that we
take for estimating 𝑓 often depends on whether the goal is inference or prediction.

 4

EXAMPLE: (Prediction vs. Inference) Suppose we will use a model for predicting whether a
patient will develop heart disease based on demographic information (age, race, sex) and health
metrics (body mass index (bmi), blood pressure, waist-to-hip ratio). Based on the stated goal,
identify the problem as a prediction problem or an inference problem.

a. Goal: help patients understand how their health metrics affect the risk of developing heart
disease. For instance, the doctor may want to explain how reducing bmi by 1 point affects
the odds of developing heart disease.

b. Goal: diagnose patients as accurately as possible.

 5

Toolkit

Overview of Tools

Throughout the course, we will use 3 primary tools for analyzing data.

1. R – a programming language and environment for statistical computing and graphics.

a. While we must install R before installing RStudio, we will not directly use the R
application.

b. If you are seeing a window named “R Console” as shown below, you are using the
wrong application. Close the R app and open the RStudio app instead.

2. RStudio – an integrated development environment (IDE) for R.

a. RStudio includes an interface that simplifies the process of interacting with R.
b. Upon opening the RStudio app, you should see a window named “RStudio”, as

shown in the figure on the next page. The four green boxes, with a dashed line
frame, were added to emphasize the four panes of RStudio. The green boxes will
not be visible when you open the RStudio app.

 6

c. Upon using RStudio for the first time, you may only see 3 panes. If this is the case,
choose File -> New File -> R Script. This will display the 4th window.

3. RMarkdown – a file format for creating dynamic, reproducible documents which blend code,

output, and discussion.

 7

RStudio Tour/Basic Functionality

Before working through the examples that follow, you are encouraged to create a folder for this
class. Using either Windows Explorer (Windows) or Finder (Mac), navigate to where you wish to
store the folder on your computer. Create a new folder called STAT508. Within the STAT508
folder, you may also want to create folders for Lessons, Data Sets, Code, Data Analysis Activities,
etc.

NOTE: As mentioned previously, RStudio consists of four panes. Each pane serves a different
purpose. In the following table, we describe the four panes.

Name and Use of Pane Screenshot of Pane

Bottom Left:
Console Pane

Use: We can enter and
run small segments of
code in the Console
pane. We will also see
results, errors, and
warnings in this pane.

Upper Left:
Scripting Pane

Use: The Scripting pane
is where we create R
Markdown documents
and write code that we
wish to save.

NOTE: If you are not
seeing the Scripting
pane, choose File ->
New File -> R Script.

 8

Upper Right:
Environment Pane

Use: The Environment
pane shows the names
of objects that you have
stored.

Bottom Right:
Multi-use Pane

Use: This pane serves
many purposes including
navigating files in the
working directory,
exploring packages, and
searching for the help
file documentation.

NOTE: We will use the
name of the tab (e.g.,
Help) that we are
discussing to refer to this
pane.

EXAMPLE: (R as a calculator.) R may be used as a calculator by entering calculations directly into
the Console pane. In the Console pane, look for the > symbol. This serves as the prompt telling
you that R is ready for you to enter a command. In the Console pane, type the R command from
each row and press “Enter” or “Return” on your keyboard to obtain the numerical answer.

R Command Mathematical Expression Numerical Answer
9^2 92 81

sqrt(36) √36 6

exp(3) 𝑒3 20.08554

NOTE: sqrt() and exp() are examples of functions. For example, “sqrt” is the name of the square
root function and the information inside the parentheses (i.e, 36) is called an argument of the
function. With a few exceptions, R functions are almost always followed by a set of parentheses
and the corresponding arguments.

 9

NOTE: We often wish to associate values or results of calculations with objects in R. We can
accomplish this using assignment operator (<-) and statements of the form:

object_name <- value

There are a few simple rules that apply when creating a name for an object.

1. The object name cannot start with a number, but numbers may be used elsewhere
2. The object name cannot contain punctuation symbols, but there are two exceptions: you

can use a period (.) or an underscore (_) in object names.
3. The case of the letters matters (ABC is different than Abc which is also different than abc)

EXAMPLE: (Storing objects.) Create 2 vectors named Pretest_score and Posttest_score by running each
line of code shown below in the Console pane. When using an assignment statement, the object
will be stored in the Environment and is listed in the Environment pane.

Pretest_score <- c(5,3,10)

Posttest_score <- c(14,17,19)

EXAMPLE: (Using stored objects). Using the objects created in the previous example, verify the
following:

Task Numerical Answer

Calculate the improvement in test scores by calculating:
Posttest_score – Pretest_score

9 14 9

Calculate: sd(Posttest_score). 2.516611

EXAMPLE: What does the function “sd” do? You can access the help file/documentation by
running ?sd OR help(“sd”) in the Console pane. This opens the “Help” tab in the bottom right pane.

EXAMPLE: (Common mistakes - typos and case in R). As you begin to type your own commands,
you will encounter typos. Run each R command in the Console pane. For each case, the error
message is shown. Identify the cause of the error.

R Command Error Message Cause of Error
srqt(36) Error in srqt(36)∶ could not find

function "srqt"

Sqrt(36) Error in Sqrt(36) : could not
find function “Sqrt”

sqrt[36] Error in sqrt[36] : object of
type 'builtin' is not subsettable

NOTE: There’s an implied contract between you and R: it will do the tedious computation for you,
but in return, you must be completely precise in your instructions. Typos matter. Case matters.

 10

NOTE: Quotation marks and parentheses (or other grouping symbols) must always come in pairs.
RStudio does its best to help you, but it’s still possible to end up with a mismatch. If this happens,
R will show you the continuation character “+” in the console.

EXAMPLE: (Common mistake - incomplete command.) Enter the line exactly as shown below in
the Console pane and run it:

y <- “Hello World!

NOTE: The + symbol in the Console window tells you that R is waiting for more input; it does not
think you are done yet. This usually means you have forgotten either a " or a close parenthesis
(i.e.,)). You can add the missing piece or press ESCAPE (ESC) on your keyboard to start over.

EXAMPLE: (Reading an external dataset into R.) R contains a number of built-in datasets, but we
also often analyze external (outside of R) data. There are many ways to read external data into R.
One approach is to take the following steps:

a) Download the dataset L01_BirthWt.csv from the U1:L1 module in Canvas and locate the
file. (Mac users should avoid using Safari for downloading the dataset from Canvas. Use
Chrome or Firefox. Also, avoid saving the file in Numbers.)

b) In the Environment pane (upper right) click on Import Dataset.
c) Select From Text (base).
d) Browse to where you stored the file L01_BirthWt.csv and select Open.
e) Edit the name (upper left) if desired. (Name it Births for this and future examples.)
f) You will see a preview in the Data Frame portion. If it looks reasonable, select IMPORT.
g) PRO TIP: This sequence of actions will cause R to create some code in the Console pane.

I highly recommend copying that code into your Scripting pane.

EXAMPLE: (More functions and accessing variables in a data frame.) Enter the following
commands in the Console pane. Verify the result of each and explain what each function is doing.

R Command Output Explanation
names(Births)

[1] "bwt" "gestation" "parity" "age"
[4] "height" "weight" "smoke"

mean(Births$weight)

128.4787

table(Births$smoke)

No Yes
715 459

table(Births[, 7])

No Yes
715 459

NOTATION: datasetName$variableName references the variableName column within a dataset.

NOTATION: datasetName[a, b] references the ath row and bth column in a dataset. Since no rows are
specified in Births[, 7] all rows in the 7th column are used.

 11

Definition: An R package is a collection of functions, data, and documentation that extends the
capabilities of base R.

NOTE: Each time you start a new RStudio session, a small subset of packages is automatically
loaded. Since these packages are always available, we call them the Base-R packages.

NOTE: We will often extend the capabilities of the Base-R packages by downloading additional
packages. This is a two step process:

1. Download the package to your computer. (This is done ONCE by using the install.packages()
function OR by using the Install button on the Packages tab in the bottom right pane.)

2. Tell RStudio that you wish to load the capabilities of the desired package. (This is done
EACH TIME you restart your RStudio session by using the library() function OR by using the
checkbox on the Packages tab in the bottom right pane. Only load packages that are
necessary for your analysis).

NOTE: The install.packages() code is only run one time to download the files to your computer;
however, you must use the library() command in each R session in which you wish to use the
functionality of an add-on package.

NOTE: We can view the packages that are currently installed by selecting the Package tab near
the Plots tab (bottom right pane). Packages installed on your computer will be listed and packages
that have a check mark are ready for use in your R session.

EXAMPLE: (Installing packages.) Install the palmerpenguins and tidyverse packages suing the
install.packages() function and load their functionality using the library() function.

NOTE: To check if this worked properly, check the Packages tab in the bottom right pane. If both
palmerpenguins and tidyverse have checked boxes, you have successfully downloaded the
packages and loaded their capabilities.

NOTE: The palmerpenguins package contains a dataset with size measurements (such as bill length,
bill depth, flipper length, and body mass), sex, and island for three penguin species observed on
three islands in the Palmer Archipelago, Antarctica over a study period of three years. You can
read more at: https://education.rstudio.com/blog/2020/07/palmerpenguins-cran/.

NOTE: The tidyverse is a collection of R packages that are commonly used for data wrangling and
data visualization. Installing the tidyverse package installs a number of important packages including
dplyr() and ggplot2(). It is common for students, especially those working on a Mac, to encounter
some problems when initially installing the tidyverse. If you encounter problems, please contact your
instructor for help. (Most importantly, do not let the initial stresses of getting the software set up
cause you to panic. We will get through it together.)

https://education.rstudio.com/blog/2020/07/palmerpenguins-cran/

 12

R Markdown

The purpose of data wrangling and visualization is communication: condensing and presenting
data in a form that conveys information. An important part of communication is documentation and
reporting.

PURPOSE: An important concept in data-driven reporting is reproducibility. The idea is to be able
to reproduce your entire document without any manual intervention, and, more importantly, to be
easily able to generate a new report in response to changes in data or revisions in computer
commands. In other words, reproducible reports contain all the information needed to generate a
new report. Common document formats such as .pdf, .docx, or .html do not offer support for
reproducibility.

Definition: We will use a Markdown tool that will loosely be called RMarkdown. RMarkdown files
have a .Rmd file extension, which is a file format for creating dynamic, reproducible documents
which blend code, output, and discussion. We can start a new RMarkdown document by going to:

File >> New File >> R Markdown

You may be prompted to install or update one (or more) packages. If so, agree to install/update
the packages. (Selecting “Yes” should automatically download the files and no further action is
necessary.) A “New R Markdown” window will open. Accept the defaults by selecting the OK
button. This produces a new tab, titled Untitled1 in the scripting pane as shown below:

 13

NOTE: (Structure) .Rmd documents generally require two parts:

1. “YAML” header at the top (designated by --- before/after) includes some document controls:
a. title
b. author name
c. date
d. output type

2. body of the document is made of various combinations of components such as:

a. Markdown syntax (like hashtag headers)
b. Narrative text
c. Lists (bullets or numbers)
d. R Code “chunks” (begin with ```{r} and end with ```)
e. URLs
f. Tables

EXAMPLE: (R markdown basics) In order to explore some basics of R Markdown, perform the
following steps:

a. In your new R markdown script, click the Knit button. This should trigger a prompt to save
the file to a location on your computer. Name the file STAT508_L1_RmdDemo and select
Save. This will open a new window showing you the document that you just created!!!!

b. If you navigate (using Windows Explorer or Finder) to the folder where you save the file, you

should see two files:

1. STAT508_L1_RmdDemo.Rmd (this is the R code/script in Markdown form)
2. STAT508_L1_RmdDemo.html (this is the HTML document) – which you can think of as

your final document.

c. Delete all code and text from Line 11 to the end of the document.

d. Add a level 2 header called “Front Matter”. Add an R chuck that includes a library command

for tidyverse and the R code for reading in the L01_BirthWt.csv file. Run the R chunk.

e. Add a level 2 called “Regression Example”. Using Births create a scatterplot showing the birth

weight (bwt) as a function of the gestation period. Then comment on the nature of the
relationship.

f. Build a simple linear regression model for predicting bwt as a function of gestation. Then, write

the estimated equation.

g. Edit the YAML header to include your name, change the title to “Rmd Demo”, and Knit the

document.

h. (Extra markdown resources) Go to Help >> Markdown Quick Reference. This will show you

some useful tips for formatting text (using bold/italics), adding headers, creating lists,
inserting a link to a website, inserting a picture that is not created by R, etc.

 14

In many instances, such as for the lecture notes, I will provide with your .Rmd files that include
some code covered in Lectures. Be sure to download the files from Canvas and open them in
RStudio.

EXAMPLE: (Opening an R markdown file.) At this time, download and open the R markdown file
STAT508_U1L1.Rmd.

 15

Exploratory Data Analysis

Overview of Exploratory Data Analysis

Definition: Exploratory Data Analysis (or EDA) is a process that uses a combination of
transformations, data visualizations, and numerical summaries to gain insights about a dataset.
EDA is often the first step when exploring a dataset.

EDA is a creative process that involves asking and answering questions. The questions often
involve exploring:

• the distribution of a single variable (univariate analysis)

• the relationship between two or more variables (bivariate or multivariate analysis)

Resource: R for Data Science (Wickham and Grolemund) provide a nice overview of EDA:
https://r4ds.had.co.nz/exploratory-data-analysis.html#exploratory-data-analysis

Data Visualization and Numerical Summaries

MAJOR IDEA: Throughout this course, you will learn a variety of tools for various purposes (data
wrangling, visualization, modeling, etc.). A recurring theme is that you must be able to choose the
appropriate tool for a given task. The choice often depends on the type of data being used.

EXAMPLE: (Common visualizations.) This example shows a few common data visualizations
produced using the ggplot() function from the ggplot2 package within the tidyverse. The “Plot
Information” column contains the name of the visualization and information about the plot, such as
when it is appropriate use the given visualization. The code for creating these plots, along with
some customization commands not covered in the notes, are shown in the STAT508_U1L1.Rmd
file. Be sure to read through the R code in the markdown file.

https://r4ds.had.co.nz/exploratory-data-analysis.html#exploratory-data-analysis

 16

Plot Example Plot Information

Name: Bar Plot/Bar Chart

Command: geom_bar()

Shows: the number of observations (or
relative proportions) of each category of
a categorical variable.

Use when: visualizing the distribution of
a single categorical variable
(univariate plot)

Name: Histogram

Command: geom_histogram()

Shows: the number of observations that
fall into each interval of the variable

Use when: visualizing the distribution of
a single quantitative variable
(univariate plot)

Name: Density Plot

Command: geom_density()

Shows: the kernel density estimate,
which is like a smoothed histogram. The
y-axis is the density (total area under the
density curve is 1 like a Probability
Density Function).

Use when: visualizing the distribution of
a single quantitative variable
(univariate plot)

 17

Plot Example Plot Information

Name: Scatterplot

Command: geom_point()

Shows: the relationship between two
quantitative variables measured on the
same observations.

Use when: visualizing the relationship
between two quantitative variables
(bivariate plot)

Name: Side-by-side boxplots

Command: geom_boxplot()

Shows: the five-number summary
(minimum value, 1st quartile (Q1),
median, 3rd quartile (Q3), and maximum)
of a quantitative variable for each level
of a categorical variable

Use when: visualizing the relationship
between one quantitative variable and
one categorical variable (bivariate plot)

 18

NOTE: Several upcoming examples will use the dataset penguins. This dataset, found in the
palmerpenguins package, contains size measurements (such as bill length, bill depth, flipper length,
and body mass), sex, and island for three penguin species observed on three islands in the
Palmer Archipelago, Antarctica over a study period of three years. You can read more at:
https://education.rstudio.com/blog/2020/07/palmerpenguins-cran/.

Artwork by @allison_horst

EXAMPLE: (Loading and previewing a dataset from a package.) After loading the palmerpenguins
library, create an object named penguins in the Environment using the data() function shown below.
Then, preview the dataset by using the glimpse() function from the dplyr library.

As shown in the output, the glimpse() provides some useful information about the dataset including:

• the number of rows/observations and columns/variables

• the names of the variables

• the type of data contained in each variable
o <fct> represents a factor (i.e., a categorical variable)
o <dbl> represents a double (i.e., a number including decimal places)
o <int> represents an integer
o <chr> (not pictured above) represents a character data

• a preview of the first few values in each variable

https://education.rstudio.com/blog/2020/07/palmerpenguins-cran/
https://www.allisonhorst.com/

 19

While R includes many tools for data visualization, the ggplot() function from the ggplot2 package is
one of the most versatile methods for visualizing data.

EXAMPLE: (Layers of ggplot demonstration.) To fully understand how ggplot() uses layers to build a
plot, enter and run one line at a time. Then, comment on you have learned from the plot.

ggplot(data = penguins,
 mapping = aes(x = bill_length_mm,

 y = bill_depth_mm)) +
 geom_point() +
 geom_smooth(method = lm, se = FALSE) +
 labs(x = "Bill Length (in mm)",
 y = "Bill Depth (in mm)",
 title = "Penguin Bill Depth vs. Bill Length",
 caption = "Source: palmerpenguins Package")

NOTE: More advanced examples will follow, but ggplot() function calls often start with the following
foundation:

 20

ggplot(data = [dataset],
 mapping = aes(x = [x-variable], y = [y-variable])) +
 geom_xxx() +
 other options

Observations:

• ggplot() creates a coordinate system that you can add layers to.

• The first argument of ggplot() is the dataset to use in the graph. So ggplot(data =

penguins) creates an empty graph, but it’s not very interesting

• The mapping argument defines how variables in your dataset are mapped to visual
properties.

• The mapping argument is always paired with the aes() (short for aesthetic) function, and

the x and y arguments of aes() specify which variables to map to the x and y axes.
• Aesthetics include details like the x/y axis variables and the size, shape, or color of your

points.

• We complete the graph by adding one or more layers to ggplot(). For example,

the geom_point() adds a layer of points to your plot, which creates a scatterplot.

• ggplot2 comes with many geom functions (such as geom_point(), geom_boxplot(), geom_histogram(),
etc.) that each add a different type of layer to a plot.

• Resource: A ggplot2 cheat sheet with many details, including various geom functions and
their options, may be found at: https://ggplot2.tidyverse.org/

NOTE: Aesthetics are an important part of the ggplot() functionality. Beyond mapping variables to
the axes, aesthetics allow characteristics of the symbols on the plot to be mapped to a specific
variable in the data. Examples of aesthetics include color (or colour), shape, size, alpha (controls
the transparency). Using aesthetics is one method for representing more than 2 variables in a
given visualization.

EXAMPLE: (Using aesthetics.) Create an appropriate plot for visualizing the bill depth as a
function of the bill length. Add an aesthetic (here, use color and shape) to incorporate the

https://ggplot2.tidyverse.org/

 21

categorical variable species. Then comment on what you have learned about the relationship
between bill depth, bill length, and species.

CAUTION: Using multiple aesthetics such as shape, color, and size to display multiple variables
can produce a confusing, hard-to-read graph.

 22

SOLUTION: Instead, facets—multiple side-by-side graphs used to display levels of a categorical
variable—provide a simple and effective alternative.

EXAMPLE: (Faceting using two categorical variables.) The following code allows us to investigate
the relationship between bill depth, bill length, sex, and species. To do this, we will facet on
species and sex.

ggplot(data = penguins, mapping = aes(x = bill_length_mm, y = bill_depth_mm)) +
 geom_point(shape = 5) +
 facet_grid(species ~ sex) +
 labs(x = "Bill Length (in mm)",
 y = "Bill Depth (in mm)")

Observations:

• In the facet_grid(species ~ sex) command, the variable to the left of the tilde (~) controls the rows
of the grid, while the variable to the right of the tilde controls the columns.

• The shape = 5 command controls the shape of the plotting symbol. This is a visual feature of
the symbols on the plot; however, since we are fixing a value for the shape instead of
controlling it by the values of a variable, the command does not go inside the aes() function.
Enter it in the geom_point() function directly.

• Resource: For a complete list of shapes, please see:
http://www.sthda.com/english/wiki/ggplot2-point-shapes

http://www.sthda.com/english/wiki/ggplot2-point-shapes

 23

EXAMPLE: (Faceting using one categorical variable.) Repeat the previous example but only facet
on species to produce the plot shown below. Since species is the column variable, but no column
variable is needed, replace the row variable name by a period (.) in the facet_grid() command.

ggplot(penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
 geom_point(shape = 5) +
 facet_grid(. ~ species) +
 labs(x = "Bill Length (in mm)",
 y = "Bill Depth (in mm)")

EXAMPLE: (Supporting data visualization with numerical summaries.) Suppose we wish to
explore whether a penguin’s species is related to its body mass.

a. Explain why a scatterplot is not appropriate for this problem and recreate the plot below.

 24

b. In addition to the side-by-side boxplots generated Part a., we would support the visualization
with summary statistics. For each species, find the number of penguins and the mean,
median, and standard deviation of the body masses. Modify the given code given below to
eliminate the NA’s.

NOTE: group_by() paired with summarize() finds summary statistics for each level of the
categorical variable included in the group_by() statement (or for each combination of
categorical variables if more than one is listed).

Unfortunately, some of the values are missing and reported as NA’s.

The corrected output is shown below.

c. Based on the boxplots, what have you learned about the relationship between body mass
and the species of the penguins?

 25

EXAMPLE: (Alternative methods for finding the summary statistics.) An alternative method is
presented below for finding the summary statistics that were calculated in the previous example.
Explain why this alternative method is less efficient than using group_by() paired with summarize().

Explanation of code and inefficiency:

• The filter() command selects the observations/rows in penguins for which the value of species
matches the species indicated inside the quotation marks. The resulting dataset is stored
as df1, df2, etc.

• For each dataset, four distinct commands are used to calculate the count, mean, median,
and standard deviation, respectively.

• This code requires 5 lines of code (4 summary statistics + 1 filter) for each of the 3 species.

• Using group_by() paired with summarize() is more efficient because the code is not dependent
on the number of levels in species. Whether there are 3 species or 30 species, the group_by()
paired with summarize() code would be the same; however, the “Alternative Method” would
require 5 x 30 or 150 lines of code if there were 30 species.

 26

Data Wrangling

Definition: Data wrangling is the process of reforming, summarizing, and combining data to make
it more suitable for a given purpose.

NOTE: The tidyverse is a collection of R packages that are commonly used for data wrangling and
data visualization. The dplyr package, which is part of the tidyverse, contains a number of important
data wrangling functions. In particular, we regularly use the following “dplyr verbs”:

• filter() – select a subset of rows (observations), often according to their values

• arrange() – reorder/sort the rows

• select() – select a subset of columns (variables)

• mutate() – add (e.g., create new variables) or modify existing columns

• rename() – change the names of columns (variables)

• summarize() – aggregate data across rows
o often paired with group_by() to find the summary statistics for each level of a

categorical variable

Resource: The Data transformation with dplyr cheatsheet at
https://posit.co/resources/cheatsheets/ is a great resource.

EXAMPLE: (dplyr verbs) Consider the following information for consultants working on a project.
The variables include the employee ID number, the worker level (entry-level, mid-level, or senior-
level), the employee’s hourly wage in dollars, and the hours worked on a given project. You may
assume the data frame containing this information is named df in R. For each R command listed
below, indicate the resulting dataset.

EmployeeID Level HourlyWage Hours

5073 Entry 20 10

4059 Senior 80 3

7941 Senior 60 5

4909 Senior 100 2

a. R command: select(df, EmployeeID, HourlyWage) OR

df %>%
 select(EmployeeID, HourlyWage)

EmployeeID Level HourlyWage Hours

5073 Entry 20 10

4059 Senior 80 3

7941 Senior 60 5

4909 Senior 100 2

b. R command: filter(df, Level == “Entry”) OR

https://posit.co/resources/cheatsheets/

 27

df %>%
 filter(Level == “Entry”)

EmployeeID Level HourlyWage Hours

5073 Entry 20 10

4059 Senior 80 3

7941 Senior 60 5

4909 Senior 100 2

c. R command:

df %>%
 filter(Level != “senior”) %>%
 rename(ID = EmployeeID)

EmployeeID Level HourlyWage Hours

5073 Entry 20 10

4059 Senior 80 3

7941 Senior 60 5

4909 Senior 100 2

d. R command:

df %>%
 mutate(Pay = HourlyWage * Hours)

EmployeeID Level HourlyWage Hours

5073 Entry 20 10

4059 Senior 80 3

7941 Senior 60 5

4909 Senior 100 2

e. R command:

df %>%
 summarize(MeanHours = mean(Hours)

EXAMPLE: (Command chains) It is common to combine multiple dplyr verbs into a single
command chain. The chain starts with kc, which represents 1000 randomly selected properties for

 28

in King County (Seattle, Washington). The chain creates a new data frame called Mansions by
selecting properties that have more than 5 bedrooms or at least 5 thousand square feet of living
space, creates a new variable called acres that represents the lot size in acres instead of square
feet, and sorts the properties in descending order of price.

• Each link in the chain is a “data verb” or “data move” with its arguments
o The very first link is typically a data table/data frame. Here, it starts with kc.
o Links are connected by the pipe: %>%

• Often, but not always, you will store the result of the chain in a named object
o This is done with the assignment operator, <-

• Use a new line for each link

• Note that %>% is at the end of each line. Except
o Mansions <- is an assignment statement
o Last line has no %>% (otherwise R would expect more commands.)

• In the filter() command, the vertical bar (|) is interpreted as OR. This command is selecting
properties that have more than 5 bedrooms OR at least 5 thousand square feet of living
space. If you wanted to use AND, you would use the ampersand symbol (&).

EXAMPLE: (dplyr practice in R) Download L01_Insurance_m.csv from Canvas and the read
dataset into R. The dataset contains information about a number of health insurance policies. In
particular, the data set contains some attributes of the policy holder (such as age, sex, etc.) and
the total charges billed by the health care provider. The variables are:

• age: age of primary beneficiary

• sex: sex of primary beneficiary

• bmi: Body mass index, providing an understanding of body, weights that are relatively high
or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height
to weight, ideally 18.5 to 24.9

• children: Number of children covered by the health insurance policy (i.e., the number of
dependents)

• smoker: Status indicating whether the person is a smoker (options include ‘yes’ and ‘no’)

• region: the beneficiary's residential area in the US (options include northeast, southeast,
southwest, northwest).

• charges: Individual medical costs as billed by health insurance

 29

a. Suppose we wish to determine whether the medical charges depend on the region for
smokers over 40. To answer this, calculate appropriate summary statistics and create a
supporting data visualization. (One possible visualization is shown below.)

 30

b. Suppose we are interested in whether smoking status and a person’s obesity classification
affect medical charges. To answer this, recreate the plot shown below. What have you
learned about the relationship between the variables? NOTE: Obese takes on a value of
“Yes” if the person’s BMI is 30.0 or higher.

NOTE: The ifelse() function is useful when creating new variables. The command form is:

ifelse(check a condition, value if true, value if false)

	Introduction to Statistical Learning
	Statistical Learning Terminology
	Common Goals

	Toolkit
	Overview of Tools
	RStudio Tour/Basic Functionality
	R Markdown

	Exploratory Data Analysis
	Overview of Exploratory Data Analysis
	Data Visualization and Numerical Summaries
	Data Wrangling

