## 1 Solutions to Matrix Definitions Problems

1.1) $3 \times 2$
1.2) $a_{3,2}=5 ?$
1.3) What is the value of $a_{1,1}=8$ ?
1.4) $4 \times 4$
1.5) $b_{2,1}=2$
1.6) What is the value of $a_{3,3}=8$
1.7) c is a scalar
1.8) d is a vector

## 2 Solutions to Matrix Arithmetic Problems

2.1) A is not symmetric.

$$
A^{T}=\left(\begin{array}{ccc}
0 & 7 & 5 \\
-8 & 0 & 5 \\
5 & -3 & -15 \\
1 & -10 & -1 \\
-4 & 3 & -6
\end{array}\right)
$$

2.2) C is not symmetric.

$$
C^{T}=\left(\begin{array}{ccc}
-4 & -5 & 7 \\
2 & 6 & -1 \\
-10 & 2 & -1
\end{array}\right)
$$

2.3) $C+D=\left(\begin{array}{ccc}0 & 3 & -7 \\ -4 & -1 & -3 \\ 16 & -1 & -7\end{array}\right)$
2.4) $E+D=\left(\begin{array}{ccc}13 & 8 & 4 \\ 9 & -15 & 3 \\ 10 & -4 & -7\end{array}\right)$
2.5) $2 *(C-D)+4 * E=\left(\begin{array}{ccc}20 & 30 & -22 \\ 20 & -6 & 46 \\ 0 & -18 & 6\end{array}\right)$
2.6) $A * g=\left(\begin{array}{c}14 \\ -65 \\ 126\end{array}\right)$
2.7) $f * g=52$
2.8) $2 * f * B=\left(\begin{array}{lll}156 & 52 & 88\end{array}\right)$
2.9) $A * B+3 * C=\left(\begin{array}{ccc}-28 & 28 & -37 \\ -42 & -3 & 99 \\ 224 & 9 & 5\end{array}\right)$
2.10) $C *(D+E)=\left(\begin{array}{ccc}-134 & -22 & 60 \\ 9 & -138 & -16 \\ 72 & 75 & 32\end{array}\right)$

## 3 Solutions to Matrix Properties Problems

3.1) $\operatorname{tr}(A)=-8$
3.2) $\operatorname{det}(A)=0$
3.3) $\operatorname{tr}\left(-2 * A * I_{2}\right)=16$
3.4) $\operatorname{tr}\left(B+I_{3}\right)=4$
3.5) $\operatorname{det}(B)=404$
3.6) $\operatorname{det}(4 * B)=25856$
3.7) $\operatorname{det}(C)=-4240$
3.8) $\operatorname{det}\left(C^{T}\right)=-4240$

## 4 Solutions to Matrix Inverse Problems

4.1) A and B are not inverses of each other because

$$
A B=\left(\begin{array}{cc}
-23 & -19 \\
40 & 40
\end{array}\right)
$$

4.2) A and C are inverses of each other because

$$
A C=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

4.3) D is not invertible because $\operatorname{det}(D)=0$
4.4) E is invertible because $\operatorname{det}(E)=-35 \neq 0$.

$$
E^{-1}=\left(\begin{array}{cc}
\frac{1}{7} & 0 \\
-\frac{2}{35} & -0.2
\end{array}\right)
$$

## 5 Solutions to Advanced Topics Problems (1 point each)

5.1) Vectors a and b are not orthogonal. Vectors a and care orthogonal.
5.2) Vectors b and c are linearly independent. Vectors a, b, and c are also linearly independent.
5.3) $\|a\|_{2}=\sqrt{24}=4.898979$ and $\|b\|_{\infty}=3$
5.4) $\|D\|_{F}=18.76$
5.5) $\operatorname{rank}(\mathrm{D})=3$.
5.6) nullity $(\mathrm{D})=0$.
5.7) E is not in reduced-row echelon form because it violates condition three. F is in reduced-row echelon form.
5.8) $G^{-1}=\left(\begin{array}{ccc}0.250 & 0.10 & 0.050 \\ -0.125 & 0.15 & 0.075 \\ -0.875 & 0.05 & -0.475\end{array}\right)$
5.9) The eigenvalues of H are 5 and -4 and they have corresponding eigenvectors $\binom{1}{0}$ and $\binom{2 / 9}{9}$ respectively.
5.10) The eigenvalues of I are $\frac{1}{2}(3-\sqrt{41})$ and $\frac{1}{2}(3+\sqrt{41})$ and they have corresponding eigenvectors $\binom{\frac{1}{4}(5-\sqrt{41})}{1}$ and $\binom{\frac{1}{4}(5+\sqrt{41})}{1}$ respectively.

