In the past two lessons, we've explored ways to fit and evaluate logistic regression models for a binary response. These results generalize what we saw earlier for two and three-way tables to explain associations between two variables while controlling for additional variables and allowing for both categorical and continuous types. One shortcoming, however, would be in accommodating response variables with more than two levels (something more general than "success" or "failure"). For this, we can utilize a multinomial random component; the link and systematic components need not change. The challenge, as we'll see, is in defining and interpreting odds when more than one complementary category is involved.
User Preferences
Content Preview
Arcu felis bibendum ut tristique et egestas quis:
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Odit molestiae mollitia
laudantium assumenda nam eaque, excepturi, soluta, perspiciatis cupiditate sapiente, adipisci quaerat odio
voluptates consectetur nulla eveniet iure vitae quibusdam? Excepturi aliquam in iure, repellat, fugiat illum
voluptate repellendus blanditiis veritatis ducimus ad ipsa quisquam, commodi vel necessitatibus, harum quos
a dignissimos.
Keyboard Shortcuts
- Help
- F1 or ?
- Previous Page
- ← + CTRL (Windows)
- ← + ⌘ (Mac)
- Next Page
- → + CTRL (Windows)
- → + ⌘ (Mac)
- Search Site
- CTRL + SHIFT + F (Windows)
- ⌘ + ⇧ + F (Mac)
- Close Message
- ESC