Univariate Linear Modeling
This graduate level course offers an introduction into regression analysis. A researcher is often interested in using sample data to investigate relationships, with an ultimate goal of creating a model to predict a future value for some dependent variable. The process of finding this mathematical model that best fits the data involves regression analysis.
STAT 501 is an applied linear regression course that emphasizes data analysis and interpretation. Generally, statistical regression is collection of methods for determining and using models that explain how a response variable (dependent variable) relates to one or more explanatory variables (predictor variables).
This is a graduate level course in analysis of variance (ANOVA), including randomization and blocking, single and multiple factor designs, crossed and nested factors, quantitative and qualitative factors, random and fixed effects, split plot and repeated measures designs, crossover designs and analysis of covariance (ANCOVA). This course is cohort-based, which means that there is an established start and end date, and that you will interact with other students throughout the course.
Data mining and statistical learning methods use a variety of computational tools for understanding large, complex datasets. In some cases, the focus is on building models to predict a quantitative or qualitative output based on a collection of inputs. In others, the goal is simply to find relationships and structure from data with no specific output variable. This course takes an applied approach to understand the methodology, motivation, assumptions, strengths, and weaknesses of the most widely applicable methods in this field.