We previously learned how to compare two population means using either the pooled two-sample t-test or Welch's t-test. What happens if we want to compare more than two means? In this lesson, we'll learn how to do just that. More specifically, we'll learn how to use the analysis of variance method to compare the equality of the (unknown) means \(\mu_1 , \mu_2 , \dots, \mu_m\) of m normal distributions with an unknown but common variance \(\sigma^2\). Take specific note about that last part.... "an unknown but common variance \(\sigma^2\)." That is, the analysis of variance method assumes that the population variances are equal. In that regard, the analysis of variance method can be thought of as an extension of the pooled two-sample t-test.
User Preferences
Content Preview
Arcu felis bibendum ut tristique et egestas quis:
- Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
- Duis aute irure dolor in reprehenderit in voluptate
- Excepteur sint occaecat cupidatat non proident
Lorem ipsum dolor sit amet, consectetur adipisicing elit. Odit molestiae mollitia
laudantium assumenda nam eaque, excepturi, soluta, perspiciatis cupiditate sapiente, adipisci quaerat odio
voluptates consectetur nulla eveniet iure vitae quibusdam? Excepturi aliquam in iure, repellat, fugiat illum
voluptate repellendus blanditiis veritatis ducimus ad ipsa quisquam, commodi vel necessitatibus, harum quos
a dignissimos.
Keyboard Shortcuts
- Help
- F1 or ?
- Previous Page
- ← + CTRL (Windows)
- ← + ⌘ (Mac)
- Next Page
- → + CTRL (Windows)
- → + ⌘ (Mac)
- Search Site
- CTRL + SHIFT + F (Windows)
- ⌘ + ⇧ + F (Mac)
- Close Message
- ESC