Galton peas (nonconstant variance and weighted least squares)
- Load the galton data.
- Fit an ordinary least squares (OLS) simple linear regression model of Progeny vs Parent.
- Fit a weighted least squares (WLS) model using weights = \(1/{SD^2}\).
- Create a scatterplot of the data with a regression line for each model.
galton <- read.table("~/path-to-data/galton.txt", header=T)
attach(galton)
model.1 <- lm(Progeny ~ Parent)
summary(model.1)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 0.127029 0.006993 18.164 9.29e-06 ***
# Parent 0.210000 0.038614 5.438 0.00285 **
model.2 <- lm(Progeny ~ Parent, weights=1/SD^2)
summary(model.2)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 0.127964 0.006811 18.787 7.87e-06 ***
# Parent 0.204801 0.038155 5.368 0.00302 **
plot(x=Parent, y=Progeny, ylim=c(0.158,0.174),
panel.last = c(lines(sort(Parent), fitted(model.1)[order(Parent)], col="blue"),
lines(sort(Parent), fitted(model.2)[order(Parent)], col="red")))
legend("topleft", col=c("blue","red"), lty=1,
inset=0.02, legend=c("OLS", "WLS"))
detach(galton)
Computer-assisted learning (nonconstant variance and weighted least squares)
- Load the ca_learning data.
- Create a scatterplot of the data.
- Fit an OLS model.
- Plot the OLS residuals vs num.responses.
- Plot the absolute OLS residuals vs num.responses.
- Calculate fitted values from a regression of absolute residuals vs num.responses.
- Fit a WLS model using weights = \(1/{(\text{fitted values})^2}\).
- Create a scatterplot of the data with a regression line for each model.
- Plot the WLS standardized residuals vs num.responses.
ca_learning <- read.table("~/path-to-data/ca_learning_new.txt", header=T)
attach(ca_learning)
plot(x=num.responses, y=cost)
model.1 <- lm(cost ~ num.responses)
summary(model.1)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 19.4727 5.5162 3.530 0.00545 **
# num.responses 3.2689 0.3651 8.955 4.33e-06 ***
# ---
# Residual standard error: 4.598 on 10 degrees of freedom
# Multiple R-squared: 0.8891, Adjusted R-squared: 0.878
# F-statistic: 80.19 on 1 and 10 DF, p-value: 4.33e-06
plot(num.responses, residuals(model.1))
plot(num.responses, abs(residuals(model.1)))
wts <- 1/fitted(lm(abs(residuals(model.1)) ~ num.responses))^2
model.2 <- lm(cost ~ num.responses, weights=wts)
summary(model.2)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 17.3006 4.8277 3.584 0.00498 **
# num.responses 3.4211 0.3703 9.238 3.27e-06 ***
# ---
# Residual standard error: 1.159 on 10 degrees of freedom
# Multiple R-squared: 0.8951, Adjusted R-squared: 0.8846
# F-statistic: 85.35 on 1 and 10 DF, p-value: 3.269e-06
plot(x=num.responses, y=cost, ylim=c(50,95),
panel.last = c(lines(sort(num.responses), fitted(model.1)[order(num.responses)], col="blue"),
lines(sort(num.responses), fitted(model.2)[order(num.responses)], col="red")))
legend("topleft", col=c("blue","red"), lty=1,
inset=0.02, legend=c("OLS", "WLS"))
plot(num.responses, rstandard(model.2))
detach(ca_learning)
Market share (nonconstant variance and weighted least squares)
- Load the marketshare data.
- Fit an OLS model.
- Plot the OLS residuals vs fitted values with points marked by Discount.
- Use the
tapply
function to calculate the residual variance for Discount=0 and Discount=1.
- Fit a WLS model using weights = 1/variance for Discount=0 and Discount=1.
- Plot the WLS standardized residuals vs fitted values.
marketshare <- read.table("~/path-to-data/marketshare.txt", header=T)
attach(marketshare)
model.1 <- lm(MarketShare ~ Price + P1 + P2)
summary(model.1)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 3.19592 0.35616 8.973 3.00e-10 ***
# Price -0.33358 0.15226 -2.191 0.0359 *
# P1 0.30808 0.06412 4.804 3.51e-05 ***
# P2 0.48431 0.05541 8.740 5.49e-10 ***
plot(fitted(model.1), residuals(model.1), col=Discount+1)
vars <- tapply(residuals(model.1), Discount, var)
# 0 1
# 0.01052324 0.02680546
wts <- Discount/vars[2] + (1-Discount)/vars[1]
model.2 <- lm(MarketShare ~ Price + P1 + P2, weights=wts)
summary(model.2)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 3.17437 0.35671 8.899 3.63e-10 ***
# Price -0.32432 0.15291 -2.121 0.0418 *
# P1 0.30834 0.06575 4.689 4.89e-05 ***
# P2 0.48419 0.05422 8.930 3.35e-10 ***
plot(fitted(model.2), rstandard(model.2), col=Discount+1)
detach(marketshare)
Home price (nonconstant variance and weighted least squares)
- Load the realestate data.
- Calculate log transformations of the variables.
- Fit an OLS model.
- Plot the OLS residuals vs fitted values.
- Calculate fitted values from a regression of absolute residuals vs fitted values.
- Fit a WLS model using weights = \(1/{(\text{fitted values})^2}\).
- Plot the WLS standardized residuals vs fitted values.
realestate <- read.table("~/path-to-data/realestate.txt", header=T)
attach(realestate)
logY <- log(SalePrice)
logX1 <- log(SqFeet)
logX2 <- log(Lot)
model.1 <- lm(logY ~ logX1 + logX2)
summary(model.1)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.25485 0.07353 57.864 < 2e-16 ***
# logX1 1.22141 0.03371 36.234 < 2e-16 ***
# logX2 0.10595 0.02394 4.425 1.18e-05 ***
plot(fitted(model.1), residuals(model.1))
wts <- 1/fitted(lm(abs(residuals(model.1)) ~ fitted(model.1)))^2
model.2 <- lm(logY ~ logX1 + logX2, weights=wts)
summary(model.2)
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.35189 0.06330 68.755 < 2e-16 ***
# logX1 1.20150 0.03332 36.065 < 2e-16 ***
# logX2 0.07924 0.02152 3.682 0.000255 ***
plot(fitted(model.2), rstandard(model.2))
detach(realestate)
Leukemia remission (logistic regression)
- Load the leukemia data.
- Fit a logistic regression model of REMISS vs CELL + SMEAR + INFIL + LI + BLAST + TEMP.
- Calculate 95% confidence intervals for the regression parameters based on asymptotic normality and based on profiling the least-squares estimation surface.
- Fit a logistic regression model of REMISS vs LI.
- Create a scatterplot of REMISS vs LI and add a fitted line based on the logistic regression model.
- Calculate the odds ratio for LI and a 95% confidence interval.
- Conduct a likelihood ratio (or deviance) test for LI.
- Calculate the sum of squared deviance residuals and the sum of squared Pearson residuals.
- Use the
hoslem.test
function in the ResourceSelection
package to conduct the Hosmer-Lemeshow goodness-of-fit test.
- Calculate a version of \(R^2\) for logistic regression.
- Create residual plots using Pearson and deviance residuals.
- Calculate hat values (leverages), studentized residuals, and Cook's distances.
leukemia <- read.table("~/path-to-data/leukemia_remission.txt", header=T)
attach(leukemia)
model.1 <- glm(REMISS ~ CELL + SMEAR + INFIL + LI + BLAST + TEMP, family="binomial")
summary(model.1)
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) 64.25808 74.96480 0.857 0.391
# CELL 30.83006 52.13520 0.591 0.554
# SMEAR 24.68632 61.52601 0.401 0.688
# INFIL -24.97447 65.28088 -0.383 0.702
# LI 4.36045 2.65798 1.641 0.101
# BLAST -0.01153 2.26634 -0.005 0.996
# TEMP -100.17340 77.75289 -1.288 0.198
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 34.372 on 26 degrees of freedom
# Residual deviance: 21.594 on 20 degrees of freedom
# AIC: 35.594
confint.default(model.1) # based on asymptotic normality
confint(model.1) # based on profiling the least-squares estimation surface
model.2 <- glm(REMISS ~ LI, family="binomial")
summary(model.2)
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -3.777 1.379 -2.740 0.00615 **
# LI 2.897 1.187 2.441 0.01464 *
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 34.372 on 26 degrees of freedom
# Residual deviance: 26.073 on 25 degrees of freedom
# AIC: 30.073
plot(x=LI, y=REMISS,
panel.last = lines(sort(LI), fitted(model.2)[order(LI)]))
exp(coef(model.2)[2]) # odds ratio = 18.12449
exp(confint.default(model.2)[2,]) # 95% CI = (1.770284, 185.561725)
anova(model.2, test="Chisq")
# Df Deviance Resid. Df Resid. Dev Pr(>Chi)
# NULL 26 34.372
# LI 1 8.2988 25 26.073 0.003967 **
sum(residuals(model.2, type="deviance")^2) # 26.07296
model.2$deviance # 26.07296
sum(residuals(model.2, type="pearson")^2) # 23.93298
library(ResourceSelection)
hoslem.test(model.2$y, fitted(model.2), g=9)
# Hosmer and Lemeshow goodness of fit (GOF) test
# data: REMISS, fitted(model.2)
# X-squared = 7.3293, df = 7, p-value = 0.3954
1-model.2$deviance/model.2$null.deviance # "R-squared" = 0.2414424
plot(1:27, residuals(model.2, type="pearson"), type="b")
plot(1:27, residuals(model.2, type="deviance"), type="b")
summary(influence.measures(model.2))
# dfb.1_ dfb.LI dffit cov.r cook.d hat
# 8 0.63 -0.83 -0.93_* 0.88 0.58 0.15
hatvalues(model.2)[8] # 0.1498395
residuals(model.2)[8] # -1.944852
rstudent(model.2)[8] # -2.185013
cooks.distance(model.2)[8] # 0.5833219
detach(leukemia)
Disease outbreak (logistic regression)
- Load the disease outbreak data.
- Create interaction variables.
- Fit "full" logistic regression model of Disease vs four predictors and five interactions.
- Fit "reduced" logistic regression model of Disease vs four predictors.
- Conduct a likelihood ratio (or deviance) test for the five interactions.
- Display the analysis of deviance table with sequential deviances.
disease <- read.table("~/path-to-data/DiseaseOutbreak.txt", header=T)
attach(disease)
Age.Middle <- Age*Middle
Age.Lower <- Age*Lower
Age.Sector <- Age*Sector
Middle.Sector <- Middle*Sector
Lower.Sector <- Lower*Sector
model.1 <- glm(Disease ~ Age + Middle + Lower + Sector + Age.Middle + Age.Lower +
Age.Sector + Middle.Sector + Lower.Sector, family="binomial")
model.2 <- glm(Disease ~ Age + Middle + Lower + Sector, family="binomial")
anova(model.2, model.1, test="Chisq")
# Resid. Df Resid. Dev Df Deviance Pr(>Chi)
# 1 93 101.054
# 2 88 93.996 5 7.0583 0.2163
anova(model.1, test="Chisq")
# Df Deviance Resid. Df Resid. Dev Pr(>Chi)
# NULL 97 122.318
# Age 1 7.4050 96 114.913 0.006504 **
# Middle 1 1.8040 95 113.109 0.179230
# Lower 1 1.6064 94 111.502 0.205003
# Sector 1 10.4481 93 101.054 0.001228 **
# Age.Middle 1 4.5697 92 96.484 0.032542 *
# Age.Lower 1 1.0152 91 95.469 0.313666
# Age.Sector 1 1.1202 90 94.349 0.289878
# Middle.Sector 1 0.0001 89 94.349 0.993427
# Lower.Sector 1 0.3531 88 93.996 0.552339
detach(disease)
Toxicity and insects (logistic regression using event/trial data format)
- Load the toxicity data.
- Create a Survivals variable and a matrix with Deaths in one column and Survivals in the other column.
- Fit a logistic regression model of Deaths vs Dose.
- Calculate 95% confidence intervals for the regression parameters based on asymptotic normality and based on profiling the least-squares estimation surface.
- Calculate the odds ratio for Dose and a 95% confidence interval.
- Display the observed and fitted probabilities.
- Create a scatterplot of observed probabilities vs Dose and add a fitted line based on the logistic regression model.
toxicity <- read.table("~/path-to-data/toxicity.txt", header=T)
attach(toxicity)
Survivals <- SampSize - Deaths
y <- cbind(Deaths, Survivals)
model.1 <- glm(y ~ Dose, family="binomial")
summary(model.1)
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -2.64367 0.15610 -16.93 <2e-16 ***
# Dose 0.67399 0.03911 17.23 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# (Dispersion parameter for binomial family taken to be 1)
#
# Null deviance: 383.0695 on 5 degrees of freedom
# Residual deviance: 1.4491 on 4 degrees of freedom
# AIC: 39.358
confint.default(model.1) # based on asymptotic normality
confint(model.1) # based on profiling the least-squares estimation surface
exp(coef(model.1)[2]) # odds ratio = 1.962056
exp(confint.default(model.1)[2,]) # 95% CI = (1.817279, 2.118366)
cbind(Dose, SampSize, Deaths, Deaths/SampSize, fitted(model.1))
# Dose SampSize Deaths
# 1 1 250 28 0.112 0.1224230
# 2 2 250 53 0.212 0.2148914
# 3 3 250 93 0.372 0.3493957
# 4 4 250 126 0.504 0.5130710
# 5 5 250 172 0.688 0.6739903
# 6 6 250 197 0.788 0.8022286
plot(x=Dose, y=Deaths/SampSize,
panel.last = lines(sort(Dose), fitted(model.1)[order(Dose)]))
detach(toxicity)